Velopharyngeal insufficiency | |
---|---|
Other names | VPI |
Specialty | Oral and maxillofacial surgery |
Velopharyngeal insufficiency is a disorder of structure that causes a failure of the velum (soft palate) to close against the posterior pharyngeal wall (back wall of the throat) during speech in order to close off the nasal cavity during oral speech production. This is important because speech requires sound from the vocal folds and airflow from the lungs to be directed into the oral cavity (mouth) for the production of all speech sounds, with the exception of nasal consonants (m, n, and ng). If complete closure does not occur during speech, this can cause hypernasality (a resonance disorder) and/or audible nasal emission during speech (a speech sound disorder). In addition, there may be inadequate airflow to produce most consonants, making them sound weak or omitted. [1]
The terms "velopharyngeal insufficiency", "velopharyngeal incompetence", "velopharyngeal inadequacy", and "velopharyngeal dysfunction" have often been used interchangeably, although they do not mean the same thing. "Velopharyngeal dysfunction" now refers to abnormality of the velopharyngeal valve, regardless of cause. Velopharyngeal insufficiency includes any structural defect of the velum or mechanical interference with closure. Causes include a history of cleft palate, adenoidectomy, irregular adenoids, cervical spine anomalies, or oral/pharyngeal tumor removal. [2] In contrast, "velopharyngeal incompetence" refers to a neurogenic cause of inadequate velopharyngeal closure. Causes may include stroke, traumatic brain injury, cerebral palsy, or neuromuscular disorders. [3] It is important that the term "velopharyngeal insufficiency" is used if it is an anatomical defect and not a neurological problem. [4]
Velopharyngeal insufficiency can be diagnosed by a speech pathologist through a perceptual speech assessment. Speech characteristics of VPI include hypernasality (too much sound in the nasal cavity during speech) and/or audible nasal emission of air during speech. Nasal emission can also cause the consonants to be very weak in intensity and pressure. The patient may develop compensatory productions for consonants, where the sounds are produced in the pharynx (throat area) where there is adequate airflow. [5] [6]
Nasometry is a method of measuring the acoustic correlates of resonance and velopharyngeal function through a computer-based instrument. Nasometry testing gives the speech pathologist a nasalance score, which is the percentage of nasal sound of the total (nasal plus oral) sound during speech. This score can be compared to normative values for the speech passage. Nasometry is useful in the evaluation of hypernasality because it provides objective measurements of the function of the velopharyngeal valve. As such, it is often used for pre-and post-surgical comparisons and to determine speech outcomes as a result of certain surgical interventions. [7] [8]
Nasopharyngoscopy is endoscopic technique in which the physician or speech pathologist passes a small scope through the patient's nose to the nasopharynx. The nasal cavity is typically numbed before the procedure, so there is minimal discomfort. Nasopharyngoscopy provides a view of the velum (soft palate) and pharyngeal walls (walls of the throat) during nasal breathing and during speech. The advantage of this technique over videofluoroscopy is that the examiner can see the size, location, and cause of the velopharyngeal opening very clearly and without harm (e.g., radiation) to the patient. Even very small openings can be visualized. This information is helpful in determining appropriate surgical or prosthetic management for the patient. The disadvantage of this technique is that the vertical level velar elevation is less obvious than with videofluoroscopy, although this is not a big concern. [9] [10] [11]
Multiview videofluoroscopy is a radiographic technique to view the length and movement of the velum (soft palate) and the posterior and lateral pharyngeal (throat) walls during speech. The advantage of this technique is that the entire posterior pharyngeal wall can be visualized. Disadvantages include the following: 1. This procedure requires radiation, which is a particular concern for children. 2. It is not well tolerated by some children because it requires injection of barium into the nasopharynx through a nasal catheter. 3. The resolution (clarity of the image) is not nearly as good as nasopharyngoscopy. 4. Small or unilateral openings cannot be seen because the X-ray beam takes a sum of all the parts. 5. It only provides a two-dimensional view, and therefore, multiple views are needed to see the entire velopharyngeal mechanism. [10] [12] Comparison between multiview videofluoroscopy and nasoendoscopy of velopharyngeal movements."/> [13] This diagnosis method is useful in assessing velopharyngeal (VP) closure in healthy individuals vs individuals who experience velar backed articulation (BA); given that it was found that healthy individuals had VP closure occur before tongue movement, whereas individuals with BA had VP closure occur after tongue movement when articulating words. [14]
A relatively new approach in the diagnosis is magnetic resonance imaging (MRI), which is noninvasive. MRI uses the property of nuclear magnetic resonance to image nuclei of atoms inside the body. MRI is non-radiographic and therefore can be repeated more often in short periods of time. In addition, different studies show that the MRI is better as an imaging tool than videofluoroscopy for visualizing the anatomy of the velopharynx. There are some limitations of the MRI however. Unlike videofluoroscopy and nasopharyngoscopy, MRI does not show the movement of the velopharyngeal structures during speech. In addition, artifacts can be shown on the images when the patient moves while imaging or if the patient has orthodontic appliances. MRI is limited in children who are claustrophobic. Finally, MRI is much more expensive than videofluoroscopy or nasopharyngoscopy. Because of these limits, MRI is currently not widely used for clinical diagnostic purposes. [15] [16]
Speech therapy will not correct velopharyngeal insufficiency. The condition results from abnormal structure and requires physical management (surgery, or a prosthetic device if surgery cannot be done). Speech therapy is appropriate to correct the compensatory articulation productions that develop as a result of velopharyngeal insufficiency. Speech therapy is most successful after correction of velopharyngeal insufficiency. Speech pathologists who are associated with a cleft palate/craniofacial team are most qualified for this type of therapy. [17] [18]
In patients with cleft palate, the palate must be repaired through a palatoplasty for normal velopharyngeal function. Despite the palatoplasty, 20-30% of these patients will still have some degree of velopharyngeal insufficiency, which will require surgical (or prosthetic) management for correction. Therefore, a secondary operation is necessary. [19] There is not one single operative approach to surgical correction of VPI. The surgical approach typically depends on the size of the velopharyngeal opening, its location, and the cause. [20] With diagnostic tools the surgeon is able to decide which technique should be used based on the anatomical situation of the individual. The goal of every operation is to achieve the best possible result with the technique assigned to each individual case, without causing upper airway obstruction and sleep apnea. [20] Nowadays the procedure that is chosen the most from the palatoplasties is the pharyngeal flap or sphincter palatoplasty. [2]
When a pharyngeal flap is used, a flap of the posterior wall is attached to the posterior border of the soft palate. The flap consists of mucosa and the superior pharyngeal constrictor muscle. The muscle stays attached to the pharyngeal wall at the upper side (superior flap) or at the lower side (inferior flap). [19] The function of the muscle is to obstruct the pharyngeal port at the moment that the pharyngeal lateral walls move towards each other. [2] [19] It is important that the width and the level of insertion of the flap are properly constructed, because if the flap is too wide, the patient can have problems with breathing through the nose, which can result in sleep apnea. [21] Alternatively, a postoperative situation can be created with the same symptoms as before surgery. Some complications are possible; for example, the flap's width can change because of contraction of the flap. This results in a situation with the same symptoms of hypernasality after a few weeks of surgery. [2] Also a fistula can occur in 2.4% of the cases. [2] [22]
When the sphincter pharyngoplasty is used, both sides of the superior-based palatopharyngeal mucosa and muscle flaps are elevated. [23] [24] Because the distal parts (posterior tonsillar pillars, which the palatopharyngeal muscles are attached to) [2] are sutured to the other side of the posterior wall, the pharyngeal port will become smaller. As a result, the tissue flaps cross each other, leading to a smaller port in the middle and a shorter distance between the palate and posterior pharyngeal wall. [19]
There are a few advantages with using this technique. First of all the procedure is relatively easy to execute. This makes the operation cheaper, also because of a reduced anesthesia time. Secondly the dynamic sphincter can be moved as result of a remaining neuromuscular innervation, which gives a better function of the velopharyngeal port. Finally there is a lower complication rate, although obstructive sleep apnoea syndrome (OSAS) is associated. [2] [19] [25]
Both techniques are used often, but there is no standard operation. Pharyngeal flap surgery is not better than sphincter palatoplasty. [19] It is more upon the surgeon's experience, knowledge and preference which operation will be done. Also the patient’s age, [26] [27] and the size and nature of the velopharyngeal defect, contribute to which technique is used. [27] [28]
Another option for diminishing the velopharyngeal port is posterior wall augmentation. This technique is not often used. [2] Additionally this technique can only be used for small gaps. [29] When this operation is performed there are several advantages. It is possible to narrow down the velopharyngeal port without modifying the function of the velum or lateral walls. [29] Furthermore, the chance of obstructing the airway is lower, because the port can be closed more precisely. Many materials have been used for this closure: petroleum jelly, paraffin, cartilage, adjacent soft tissue, silastic, fat, Teflon and proplast. [2] But results in the long term are very unpredictable. There are problems with tissue incompatibility and migration of the implant. [2] [29] Even migration to the brain is noticed.
Prostheses are used for nonsurgical closure in a situation of velopharyngeal dysfunction. [2] [30] There are two types of prosthesis: the speech bulb and the palatal lift prosthesis. [2] The speech bulb is an acrylic body that can be placed in the velopharyngeal port and can achieve obstruction. The palatal lift prosthesis is comparable with the speech bulb, but with a metal skeleton attached to the acrylic body. [30] This will also obstruct the velopharyngeal port. [30] It is a good option for patients that have enough tissue but a poor control of the coordination and timing of velopharyngeal movement. [2] [30] It is also used in patients with contraindications for surgery. It has also been used as a reversible test to confirm whether a surgical intervention would help. [2]
Hospital will release the patient when it is appropriate and give clear instructions for pain management, wound care and cleansing and dietary modifications. Generally post surgery instructions could include:
If a patient experiences any increased pain, swelling, redness, bleeding or drainage from the surgical site, as well as fever or chills, parents should promptly contact their healthcare provider for further evaluation and management.
The word velopharyngeal uses combining forms of velo- + pharyng- , referring to the soft palate (velum palatinum) and the pharynx.
The uvula, also known as the palatine uvula or staphyle, is a conic projection from the back edge of the middle of the soft palate, composed of connective tissue containing a number of racemose glands, and some muscular fibers. It also contains many serous glands, which produce thin saliva. It is only found in humans.
A cleft lip contains an opening in the upper lip that may extend into the nose. The opening may be on one side, both sides, or in the middle. A cleft palate occurs when the palate contains an opening into the nose. The term orofacial cleft refers to either condition or to both occurring together. These disorders can result in feeding problems, speech problems, hearing problems, and frequent ear infections. Less than half the time the condition is associated with other disorders.
Rhinoplasty, commonly called nose job, medically called nasal reconstruction, is a plastic surgery procedure for altering and reconstructing the nose. There are two types of plastic surgery used – reconstructive surgery that restores the form and functions of the nose and cosmetic surgery that changes the appearance of the nose. Reconstructive surgery seeks to resolve nasal injuries caused by various traumas including blunt, and penetrating trauma and trauma caused by blast injury. Reconstructive surgery can also treat birth defects, breathing problems, and failed primary rhinoplasties. Rhinoplasty may remove a bump, narrow nostril width, change the angle between the nose and the mouth, or address injuries, birth defects, or other problems that affect breathing, such as a deviated nasal septum or a sinus condition. Surgery only on the septum is called a septoplasty.
The soft palate is, in mammals, the soft tissue constituting the back of the roof of the mouth. The soft palate is part of the palate of the mouth; the other part is the hard palate. The soft palate is distinguished from the hard palate at the front of the mouth in that it does not contain bone.
A palatal lift prosthesis is a prosthesis that addresses a condition referred to as palatopharyngeal incompetence. Palatopharyngeal incompetence broadly refers to a muscular inability to sufficiently close the port between the nasopharynx and oropharynx during speech and/or swallowing. An inability to adequately close the palatopharyngeal port during speech results in hypernasalance that, depending upon its severity, can render speakers difficult to understand or unintelligible. The potential for compromised intelligibility secondary to hypernasalance is underscored when consideration is given to the fact that only three English language phonemes – /m/, /n/, and /ng/ – are pronounced with an open palatopharyngeal port. Furthermore, an impaired ability to effect a closure of the palatopharyngeal port while swallowing can result in the nasopharyngeal regurgitation of liquid or solid boluses.
Augmentation pharyngoplasty is a kind of plastic surgery for the pharynx when the tissue at the back of the mouth is not able to close properly. It is typically used to correct speech problems in children with cleft palate. It may also be used to correct problems from a tonsillectomy or because of degenerative diseases. After the surgery, patients have an easier time pronouncing certain sounds, such as 'p' and 't', and the voice may have a less nasal sound.
Velopharyngeal inadequacy is a malfunction of a velopharyngeal mechanism which is responsible for directing the transmission of sound energy and air pressure in both the oral cavity and the nasal cavity. When this mechanism is impaired in some way, the valve does not fully close, and a condition known as "velopharyngeal inadequacy" can develop. VPI can either be congenital or acquired later in life.
Vomer flap surgery was used prior to 1975 as a surgical treatment for children with cleft palate. In this procedure, the vomer bone was used to reconstruct the palate and cover the cleft.
A palatal obturator is a prosthesis that totally occludes an opening such as an oronasal fistula. They are similar to dental retainers, but without the front wire. Palatal obturators are typically short-term prosthetics used to close defects of the hard/soft palate that may affect speech production or cause nasal regurgitation during feeding. Following surgery, there may remain a residual orinasal opening on the palate, alveolar ridge, or vestibule of the larynx. A palatal obturator may be used to compensate for hypernasality and to aid in speech therapy targeting correction of compensatory articulation caused by the cleft palate. In simpler terms, a palatal obturator covers any fistulas in the roof of the mouth that lead to the nasal cavity, providing the wearer with a plastic/acrylic, removable roof of the mouth, which aids in speech, eating, and proper air flow.
Pharyngeal flap surgery is a procedure to correct the airflow during speech. The procedure is common among people with cleft palate and some types of dysarthria.
Craniofrontonasal dysplasia is a very rare X-linked malformation syndrome caused by mutations in the ephrin-B1 gene (EFNB1). Phenotypic expression varies greatly amongst affected individuals, where females are more commonly and generally more severely affected than males. Common physical malformations are: craniosynostosis of the coronal suture(s), orbital hypertelorism, bifid nasal tip, dry frizzy curled hair, longitudinal ridging and/or splitting of the nails, and facial asymmetry.
Frontonasal dysplasia (FND) is a congenital malformation of the midface. For the diagnosis of FND, a patient should present at least two of the following characteristics: hypertelorism, a wide nasal root, vertical midline cleft of the nose and/or upper lip, cleft of the wings of the nose, malformed nasal tip, encephalocele or V-shaped hair pattern on the forehead. The cause of FND remains unknown. FND seems to be sporadic (random) and multiple environmental factors are suggested as possible causes for the syndrome. However, in some families multiple cases of FND were reported, which suggests a genetic cause of FND.
Karl Wilhelm Ernst Joachim Schönborn was a German surgeon who was a native of Breslau.
A facial cleft is an opening or gap in the face, or a malformation of a part of the face. Facial clefts is a collective term for all sorts of clefts. All structures like bone, soft tissue, skin etc. can be affected. Facial clefts are extremely rare congenital anomalies. There are many variations of a type of clefting and classifications are needed to describe and classify all types of clefting. Facial clefts hardly ever occur isolated; most of the time there is an overlap of adjacent facial clefts.
Nasal reconstruction using a paramedian forehead flap within oral and maxillofacial surgery, is a surgical technique to reconstruct different kinds of nasal defects. In this operation a reconstructive surgeon uses skin from the forehead above the eyebrow and pivots it vertically to replace missing nasal tissue. Throughout history the technique has been modified and adjusted by many different surgeons and it has evolved to become a popular way of repairing nasal defects.
The tint of forehead skin so exactly matches that of the face and nose that it must be first choice. Is not the forehead the crowning feature of the face and important in expression? Why then should we jeopardize its beauty to make a nose? First, because in many instances, the forehead makes far and away the best nose. Second, with some plastic juggling, the forehead defect can be camouflaged effectively.
Flap surgery is a technique in plastic and reconstructive surgery where tissue with an intact blood supply is lifted from a donor site and moved to a recipient site. Flaps are distinct from grafts, which do not have an intact blood supply and relies on the growth of new blood vessels. Flaps are done to fill a defect such as a wound resulting from injury or surgery when the remaining tissue is unable to support a graft, or to rebuild more complex anatomic structures like breasts or jaws.
Hypernasal speech is a disorder that causes abnormal resonance in a human's voice due to increased airflow through the nose during speech. It is caused by an open nasal cavity resulting from an incomplete closure of the soft palate and/or velopharyngeal sphincter. In normal speech, nasality is referred to as nasalization and is a linguistic category that can apply to vowels or consonants in a specific language. The primary underlying physical variable determining the degree of nasality in normal speech is the opening and closing of a velopharyngeal passageway between the oral vocal tract and the nasal vocal tract. In the normal vocal tract anatomy, this opening is controlled by lowering and raising the velum or soft palate, to open or close, respectively, the velopharyngeal passageway.
Constriction ring syndrome (CRS) is a congenital disorder with unknown cause. Because of the unknown cause there are many different, and sometimes incorrect names. It is a malformation due to intrauterine bands or rings that give deep grooves in, most commonly, distal extremities like fingers and toes. In rare cases the constriction ring can form around other parts of the fetus and cause amputation or even intrauterine death. The anatomy proximal to the site of constriction is developmentally normal. CRS can be associated with other malformations with club foot being most common. The precise configuration of the bands, lymphedema, and character of the amputations are not predictable and vary with each individual patient. Also, more than one extremity is usually affected, and it is rare for only one ring to present as an isolated malformation with no other manifestation of this syndrome.
Peter James Taub, MD, FACS, FAAP, is an American Professor of Surgery, Pediatrics, Dentistry, Neurosurgery, and Medical Education at the Icahn School of Medicine at Mount Sinai as well as Attending Plastic and Reconstructive Surgeon at the Mount Sinai Medical Center and Elmhurst Hospital Center, all in New York City. He is a diplomate of both the American Board of Surgery and the American Board of Plastic Surgery.
The velopharyngeal fricatives, also known as the posterior nasal fricatives, are a family of sounds sound produced by some children with speech disorders, including some with a cleft palate, as a substitute for sibilants, which cannot be produced with a cleft palate. It results from "the approximation but inadequate closure of the upper border of the velum and the posterior pharyngeal wall." To produce a velopharyngeal fricative, the soft palate approaches the pharyngeal wall and narrows the velopharyngeal port, such that the restricted port creates fricative turbulence in air forced through it into the nasal cavity. The articulation may be aided by a posterior positioning of the tongue and may involve velar flutter.