Vortex lattice method

Last updated
Simulation of an airplane using Open VOGEL, an open source framework for aerodynamic simulations based in the UVLM. UVLM simulation of an aircraft model.png
Simulation of an airplane using Open VOGEL, an open source framework for aerodynamic simulations based in the UVLM.

The Vortex lattice method, (VLM), is a numerical method used in computational fluid dynamics, mainly in the early stages of aircraft design and in aerodynamic education at university level. The VLM models the lifting surfaces, such as a wing, of an aircraft as an infinitely thin sheet of discrete vortices to compute lift and induced drag. The influence of the thickness and viscosity is neglected.

Contents

VLMs can compute the flow around a wing with rudimentary geometrical definition. For a rectangular wing it is enough to know the span and chord. On the other side of the spectrum, they can describe the flow around a fairly complex aircraft geometry (with multiple lifting surfaces with taper, kinks, twist, camber, trailing edge control surfaces and many other geometric features).

By simulating the flow field, one can extract the pressure distribution or as in the case of the VLM, the force distribution, around the simulated body. This knowledge is then used to compute the aerodynamic coefficients and their derivatives that are important for assessing the aircraft's handling qualities in the conceptual design phase. With an initial estimate of the pressure distribution on the wing, the structural designers can start designing the load-bearing parts of the wings, fin and tailplane and other lifting surfaces. Additionally, while the VLM cannot compute the viscous drag, the induced drag stemming from the production of lift can be estimated. Hence as the drag must be balanced with the thrust in the cruise configuration, the propulsion group can also get important data from the VLM simulation.

Historical background

John DeYoung provides a background history of the VLM in the NASA Langley workshop documentation SP-405. [1]

The VLM is the extension of Prandtl's lifting-line theory, [2] where the wing of an aircraft is modeled as an infinite number of Horseshoe vortices. The name was coined by V.M. Falkner in his Aeronautical Research Council paper of 1946. [3] The method has since then been developed and refined further by W.P. Jones, H. Schlichting, G.N. Ward and others.

Although the computations needed can be carried out by hand, the VLM benefited from the advent of computers for the large amounts of computations that are required.

Instead of only one horseshoe vortex per wing, as in the Lifting-line theory, the VLM utilizes a lattice of horseshoe vortices, as described by Falkner in his first paper on this subject in 1943. [4] The number of vortices used vary with the required pressure distribution resolution, and with required accuracy in the computed aerodynamic coefficients. A typical number of vortices would be around 100 for an entire aircraft wing; an Aeronautical Research Council report by Falkner published in 1949 mentions the use of an "84-vortex lattice before the standardisation of the 126-lattice" (p. 4). [5]

The method is comprehensibly described in all major aerodynamic textbooks, such as Katz & Plotkin, [6] Anderson, [7] Bertin & Smith [8] Houghton & Carpenter [9] or Drela, [10]

Theory

The vortex lattice method is built on the theory of ideal flow, also known as Potential flow. Ideal flow is a simplification of the real flow experienced in nature, however for many engineering applications this simplified representation has all of the properties that are important from the engineering point of view. This method neglects all viscous effects. Turbulence, dissipation and boundary layers are not resolved at all. However, lift induced drag can be assessed and, taking special care, some stall phenomena can be modelled.

Assumptions

The following assumptions are made regarding the problem in the vortex lattice method:

Method

By the above assumptions the flowfield is Conservative vector field, which means that there exists a perturbation velocity potential such that the total velocity vector is given by

and that satisfies Laplace's equation.

Laplace's equation is a second order linear equation, and being so it is subject to the principle of superposition. Which means that if and are two solutions of the linear differential equation, then the linear combination is also a solution for any values of the constants and . As Anderson [7] put it "A complicated flow pattern for an irrotational, incompressible flow can be synthesized by adding together a number of elementary flows, which are also irrotational and incompressible.”. Such elementary flows are the point source or sink, the doublet and the vortex line, each being a solution of Laplace's equation. These may be superposed in many ways to create the formation of line sources, vortex sheets and so on. In the Vortex Lattice method, each such elementary flow is the velocity field of a horseshoe vortex with some strength .

Aircraft Model

All the lifting surfaces of an aircraft are divided into some number of quadrilateral panels, and a horseshoe vortex and a collocation point (or control point) are placed on each panel. The transverse segment of the vortex is at the 1/4 chord position of the panel, while the collocation point is at the 3/4 chord position. The vortex strength is to be determined. A normal vector is also placed at each collocation point, set normal to the camber surface of the actual lifting surface.

For a problem with panels, the perturbation velocity at collocation point is given by summing the contributions of all the horseshoe vortices in terms of an Aerodynamic Influence Coefficient (AIC) matrix .

The freestream velocity vector is given in terms of the freestream speed and the angles of attack and sideslip, .

A Neumann boundary condition is applied at each collocation point, which prescribes that the normal velocity across the camber surface is zero. Alternate implementations may also use the Dirichlet boundary condition directly on the velocity potential.

This is also known as the flow tangency condition. By evaluating the dot products above the following system of equations results. The new normalwash AIC matrix is , and the right hand side is formed by the freestream speed and the two aerodynamic angles

This system of equations is solved for all the vortex strengths . The total force vector and total moment vector about the origin are then computed by summing the contributions of all the forces on all the individual horseshoe vortices, with being the fluid density.

Here, is the vortex's transverse segment vector, and is the perturbation velocity at this segment's center location (not at the collocation point).

The lift and induced drag are obtained from the components of the total force vector . For the case of zero sideslip these are given by

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates determined by distance and angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

In physics, angular velocity, also known as angular frequency vector, is a pseudovector representation of how fast the angular position or orientation of an object changes with time. The magnitude of the pseudovector represents the angular speed, the rate at which the object rotates or revolves, and its direction is normal to the instantaneous plane of rotation or angular displacement. The orientation of angular velocity is conventionally specified by the right-hand rule.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Unit vector</span> Vector of length one

In mathematics, a unit vector in a normed vector space is a vector of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in .

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Jacobian matrix and determinant</span> Matrix of all first-order partial derivatives of a vector-valued function

In vector calculus, the Jacobian matrix of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and the determinant are often referred to simply as the Jacobian in literature.

In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric tensor on M consists of a metric tensor at each point p of M that varies smoothly with p.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

One of the guiding principles in modern chemical dynamics and spectroscopy is that the motion of the nuclei in a molecule is slow compared to that of its electrons. This is justified by the large disparity between the mass of an electron, and the typical mass of a nucleus and leads to the Born–Oppenheimer approximation and the idea that the structure and dynamics of a chemical species are largely determined by nuclear motion on potential energy surfaces. The potential energy surfaces are obtained within the adiabatic or Born–Oppenheimer approximation. This corresponds to a representation of the molecular wave function where the variables corresponding to the molecular geometry and the electronic degrees of freedom are separated. The non separable terms are due to the nuclear kinetic energy terms in the molecular Hamiltonian and are said to couple the potential energy surfaces. In the neighbourhood of an avoided crossing or conical intersection, these terms cannot be neglected. One therefore usually performs one unitary transformation from the adiabatic representation to the so-called diabatic representation in which the nuclear kinetic energy operator is diagonal. In this representation, the coupling is due to the electronic energy and is a scalar quantity that is significantly easier to estimate numerically.

In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form

<span class="mw-page-title-main">Weierstrass–Enneper parameterization</span> Construction for minimal surfaces

In mathematics, the Weierstrass–Enneper parameterization of minimal surfaces is a classical piece of differential geometry.

<span class="mw-page-title-main">Gradient theorem</span> Evaluates a line integral through a gradient field using the original scalar field

The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space rather than just the real line.

In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.

The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil translating in a uniform fluid at a constant speed large enough so that the flow seen in the body-fixed frame is steady and unseparated. The theorem relates the lift generated by an airfoil to the speed of the airfoil through the fluid, the density of the fluid and the circulation around the airfoil. The circulation is defined as the line integral around a closed loop enclosing the airfoil of the component of the velocity of the fluid tangent to the loop. It is named after Martin Kutta and Nikolai Zhukovsky who first developed its key ideas in the early 20th century. Kutta–Joukowski theorem is an inviscid theory, but it is a good approximation for real viscous flow in typical aerodynamic applications.

In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non-umbilic point of a surface embedded in Euclidean space. It is named after French mathematician Jean Gaston Darboux.

The Prandtl lifting-line theory is a mathematical model in aerodynamics that predicts lift distribution over a three-dimensional wing based on its geometry. It is also known as the Lanchester–Prandtl wing theory.

In mathematical physics, the Hunter–Saxton equation

References

  1. NASA, Vortex-lattice utilization. NASA SP-405, NASA-Langley, Washington, 1976.
  2. Prandtl. L, Applications of modern hydrodynamics to aeronautics, NACA-TR-116, NASA, 1923.
  3. Falkner. V.M., The Accuracy of Calculations Based on Vortex Lattice Theory, Rep. No. 9621, British A.R.C., 1946.
  4. Falkner. V.M., The Calculations of Aerodynamic Loading on Surfaces of any Shape, R&M 1910, British A.R.C., 1943.
  5. Falkner. V.M., A Comparison of Two Methods of Calculating Wing Loading with Allowance for Compressibility, R&M 2685, British A.R.C., 1949.
  6. J. Katz, A. Plotkin, Low-Speed Aerodynamics, 2nd ed., Cambridge University Press, Cambridge, 2001.
  7. 1 2 J.D. Anderson Jr, Fundamentals of aerodynamics, 2nd ed., McGraw-Hill Inc, 1991.
  8. J.J. Bertin, M.L. Smith, Aerodynamics for Engineers, 3rd ed., Prentice Hall, New Jersey, 1998.
  9. E.L. Houghton, P.W. Carpenter, Aerodynamics for Engineering Students, 4th ed., Edward Arnold, London, 1993.
  10. M. Drela, Flight Vehicle Aerodynamics, MIT Press, Cambridge, MA, 2014.

Sources