WikiMili The Free Encyclopedia

The **wave impedance** of an electromagnetic wave is the ratio of the transverse components of the electric and magnetic fields (the transverse components being those at right angles to the direction of propagation). For a transverse-electric-magnetic (TEM) plane wave traveling through a homogeneous medium, the wave impedance is everywhere equal to the intrinsic impedance of the medium. In particular, for a plane wave travelling through empty space, the wave impedance is equal to the impedance of free space. The symbol *Z* is used to represent it and it is expressed in units of ohms. The symbol *η* (eta) may be used instead of *Z* for wave impedance to avoid confusion with electrical impedance.

In mathematics, a *ratio* is a relationship between two numbers indicating how many times the first number contains the second. For example, if a bowl of fruit contains eight oranges and six lemons, then the ratio of oranges to lemons is eight to six. Similarly, the ratio of lemons to oranges is 6:8 and the ratio of oranges to the total amount of fruit is 8:14.

An **electric field** is a vector field surrounding an electric charge that exerts force on other charges, attracting or repelling them. Mathematically the electric field is a vector field that associates to each point in space the force, called the Coulomb force, that would be experienced per unit of charge by an infinitesimal test charge at that point. The units of the electric field in the SI system are newtons per coulomb (N/C), or volts per meter (V/m). Electric fields are created by electric charges, or by time-varying magnetic fields. Electric fields are important in many areas of physics, and are exploited practically in electrical technology. On an atomic scale, the electric field is responsible for the attractive force between the atomic nucleus and electrons that holds atoms together, and the forces between atoms that cause chemical bonding. Electric fields and magnetic fields are both manifestations of the electromagnetic force, one of the four fundamental forces of nature.

A **magnetic field** is a vector field that describes the magnetic influence of electrical currents and magnetized materials. In everyday life, the effects of magnetic fields are often seen in permanent magnets, which pull on magnetic materials and attract or repel other magnets. Magnetic fields surround and are created by magnetized material and by moving electric charges such as those used in electromagnets. Magnetic fields exert forces on nearby moving electrical charges and torques on nearby magnets. In addition, a magnetic field that varies with location exerts a force on magnetic materials. Both the strength and direction of a magnetic field varies with location. As such, it is an example of a vector field.

- Wave impedance in free space
- Wave impedance in an unbounded dielectric
- Wave impedance in a waveguide
- See also
- References
- External links

The wave impedance is given by

where is the electric field and is the magnetic field, in phasor representation. The impedance is, in general, a complex number.

In physics and engineering, a **phasor**, is a complex number representing a sinusoidal function whose amplitude (*A*), angular frequency (*ω*), and initial phase (*θ*) are time-invariant. It is related to a more general concept called analytic representation, which decomposes a sinusoid into the product of a complex constant and a factor that encapsulates the frequency and time dependence. The complex constant, which encapsulates amplitude and phase dependence, is known as **phasor**, **complex amplitude**, and **sinor** or even **complexor**.

A **complex number** is a number that can be expressed in the form *a* + *bi*, where *a* and *b* are real numbers, and *i* is a solution of the equation *x*^{2} = −1. Because no real number satisfies this equation, *i* is called an imaginary number. For the complex number *a* + *bi*, *a* is called the **real part**, and *b* is called the **imaginary part**. Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers, and are fundamental in many aspects of the scientific description of the natural world.

In terms of the parameters of an electromagnetic wave and the medium it travels through, the wave impedance is given by

where *μ* is the magnetic permeability, *ε* is the (real) electric permittivity and *σ* is the electrical conductivity of the material the wave is travelling through (corresponding to the imaginary component of the permittivity multiplied by omega). In the equation, *i* is the imaginary unit, and *ω* is the angular frequency of the wave. Just as for electrical impedance, the impedance is a function of frequency. In the case of an ideal dielectric (where the conductivity is zero), the equation reduces to the real number

In electromagnetism, **absolute permittivity**, often simply called **permittivity**, usually denoted by the Greek letter ε (epsilon), is the measure of capacitance that is encountered when forming an electric field in a particular medium. More specifically, permittivity describes the amount of charge needed to generate one unit of electric flux in a particular medium. Accordingly, a charge will yield more electric flux in a medium with low permittivity than in a medium with high permittivity. Permittivity is the measure of a material's ability to store an electric field in the polarization of the medium.

The **imaginary unit** or **unit imaginary number** is a solution to the quadratic equation *x*^{2} + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of i in a complex number is 2 + 3*i*.

In physics, **angular frequency***ω* is a scalar measure of rotation rate. It refers to the angular displacement per unit time or the rate of change of the phase of a sinusoidal waveform, or as the rate of change of the argument of the sine function.

In free space the wave impedance of plane waves is:

(where *ε*_{0} is the permittivity constant in free space and *μ*_{0} is the permeability constant in free space) and:

- (by the SI definition of the metre)

hence, because the values of and are exact, the value of in ohms is exactly:

In an isotropic, homogeneous dielectric with negligible magnetic properties, i.e. H/m and F/m. So, the value of wave impedance in a perfect dielectric is

A **dielectric** is an electrical insulator that can be polarized by an applied electric field. When a dielectric is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor but only slightly shift from their average equilibrium positions causing **dielectric polarization**. Because of dielectric polarization, positive charges are displaced in the direction of the field and negative charges shift in the opposite direction. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly bonded molecules, those molecules not only become polarized, but also reorient so that their symmetry axes align to the field.

- ,

where is the relative dielectric constant.

For any waveguide in the form of a hollow metal tube, (such as rectangular guide, circular guide, or double-ridge guide), the wave impedance of a travelling wave is dependent on the frequency , but is the same throughout the guide. For transverse electric (TE) modes of propagation the wave impedance is: ^{[ citation needed ]}

where *f*_{c} is the cut-off frequency of the mode, and for transverse magnetic (TM) modes of propagation the wave impedance is:^{[ citation needed ]}

Above the cut-off (*f* > *f*_{c}), the impedance is real (resistive) and the wave carries energy. Below cut-off the impedance is imaginary (reactive) and the wave is evanescent. These expressions neglect the effect of resistive loss in the walls of the waveguide. For a waveguide entirely filled with a homogeneous dielectric medium, similar expressions apply, but with the wave impedance of the medium replacing *Z*_{0}. The presence of the dielectric also modifies the cut-off frequency *f*_{c}.

For a waveguide or transmission line containing more than one type of dielectric medium (such as microstrip), the wave impedance will in general vary over the cross-section of the line.

In physics and electrical engineering, a **cutoff frequency**, **corner frequency**, or **break frequency** is a boundary in a system's frequency response at which energy flowing through the system begins to be reduced rather than passing through.

The **propagation constant** of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the change per unit length, but it is otherwise dimensionless. In the context of two-port networks and their cascades, **propagation constant **measures the change undergone by the source quantity as it propagates from one port to the next.

In radio-frequency engineering, a **transmission line** is a specialized cable or other structure designed to conduct alternating current of radio frequency, that is, currents with a frequency high enough that their wave nature must be taken into account. Transmission lines are used for purposes such as connecting radio transmitters and receivers with their antennas, distributing cable television signals, trunklines routing calls between telephone switching centres, computer network connections and high speed computer data buses.

**Coaxial cable**, or **coax**, is a type of electrical cable that has an inner conductor surrounded by a tubular insulating layer, surrounded by a tubular conducting shield. Many coaxial cables also have an insulating outer sheath or jacket. The term coaxial comes from the inner conductor and the outer shield sharing a geometric axis. Coaxial cable was invented by English engineer and mathematician Oliver Heaviside, who patented the design in 1880.

The **relative permittivity** of a material is its (absolute) permittivity expressed as a ratio relative to the permittivity of vacuum.

**Skin effect** is the tendency of an alternating electric current (AC) to become distributed within a conductor such that the current density is largest near the surface of the conductor, and decreases with greater depths in the conductor. The electric current flows mainly at the "skin" of the conductor, between the outer surface and a level called the **skin depth**. The skin effect causes the effective resistance of the conductor to increase at higher frequencies where the skin depth is smaller, thus reducing the effective cross-section of the conductor. The skin effect is due to opposing eddy currents induced by the changing magnetic field resulting from the alternating current. At 60 Hz in copper, the skin depth is about 8.5 mm. At high frequencies the skin depth becomes much smaller. Increased AC resistance due to the skin effect can be mitigated by using specially woven litz wire. Because the interior of a large conductor carries so little of the current, tubular conductors such as pipe can be used to save weight and cost.

An **optical medium** is material through which electromagnetic waves propagate. It is a form of transmission medium. The permittivity and permeability of the medium define how electromagnetic waves propagate in it. The medium has an *intrinsic impedance*, given by

**Microstrip** is a type of electrical transmission line which can be fabricated using printed circuit board technology, and is used to convey microwave-frequency signals. It consists of a conducting strip separated from a ground plane by a dielectric layer known as the substrate. Microwave components such as antennas, couplers, filters, power dividers etc. can be formed from microstrip, with the entire device existing as the pattern of metallization on the substrate. Microstrip is thus much less expensive than traditional waveguide technology, as well as being far lighter and more compact. Microstrip was developed by ITT laboratories as a competitor to stripline.

The physical constant ** ε_{0}**, commonly called the

The **signal velocity** is the speed at which a wave carries information. It describes how quickly a message can be communicated between two separated parties. No signal velocity can exceed the speed of a light pulse in a vacuum.

The **electromagnetic wave equation** is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field **E** or the magnetic field **B**, takes the form:

The **impedance of free space**, *Z*_{0}, is a physical constant relating the magnitudes of the electric and magnetic fields of electromagnetic radiation travelling through free space. That is, *Z*_{0} = |**E**|/|**H**|, where |**E**| is the electric field strength and |**H**| is the magnetic field strength. It currently has an exactly defined value

**Dielectric loss** quantifies a dielectric material's inherent dissipation of electromagnetic energy. It can be parameterized in terms of either the **loss angle***δ* or the corresponding **loss tangent** tan *δ*. Both refer to the phasor in the complex plane whose real and imaginary parts are the resistive (lossy) component of an electromagnetic field and its reactive (lossless) counterpart.

The word *electricity* refers generally to the movement of electrons through a conductor in the presence of potential and an electric field. The speed of this flow has multiple meanings. In everyday electrical and electronic devices, the signals or energy travel as electromagnetic waves typically on the order of 50%–99% of the speed of light, while the electrons themselves move (drift) much more slowly.

When an electromagnetic wave travels through a medium in which it gets attenuated, it undergoes exponential decay as described by the Beer–Lambert law. However, there are many possible ways to characterize the wave and how quickly it is attenuated. This article describes the mathematical relationships among:

A **microwave cavity** or *radio frequency (RF) cavity* is a special type of resonator, consisting of a closed metal structure that confines electromagnetic fields in the microwave region of the spectrum. The structure is either hollow or filled with dielectric material. The microwaves bounce back and forth between the walls of the cavity. At the cavity's resonant frequencies they reinforce to form standing waves in the cavity. Therefore, the cavity functions similarly to an organ pipe or sound box in a musical instrument, oscillating preferentially at a series of frequencies, its resonant frequencies. Thus it can act as a bandpass filter, allowing microwaves of a particular frequency to pass while blocking microwaves at nearby frequencies.

The **non-radiative dielectric (NRD) waveguide ** has been introduced by Yoneyama in 1981. In Fig. 1 the cross section of NRD guide is shown: it consists of a dielectric rectangular slab of height a and width b, which is placed between two metallic parallel plates of suitable width. The structure is practically the same as the H waveguide, proposed by Tischer in 1953. Due to the dielectric slab, the electromagnetic field is confined in the vicinity of the dielectric region, whereas in the outside region, for suitable frequencies, the electromagnetic field decays exponentially. Therefore, if the metallic plates are sufficiently extended, the field is practically negligible at the end of the plates and therefore the situation does not greatly differ from the ideal case in which the plates are infinitely extended. The polarization of the electric field in the required mode is mainly parallel to the conductive walls. As it is known, if the electric field is parallel to the walls, the conduction losses decrease in the metallic walls at the increasing frequency, whereas, if the field is perpendicular to the walls, losses increase at the increasing frequency. Since the NRD waveguide has been devised for its implementation at millimeter waves, the selected polarization minimizes the ohmic losses in the metallic walls.

**Surface plasmon polaritons** (**SPPs**) are infrared or visible-frequency electromagnetic waves that travel along a metal–dielectric or metal–air interface. The term "surface plasmon polariton" explains that the wave involves both charge motion in the metal and electromagnetic waves in the air or dielectric ("polariton").

**Effective permittivity and permeability** are averaged dielectric and magnetic characteristics of a microinhomogeneous medium. They are subject of Effective medium theory. There are two widely used formulae. They both were derived in quasi-static approximation when electric field inside a mixture particle may be considered as homogeneous. So, these formulae can not describe the particle size effect. Many attempts were undertaken to improve these formulae.

- Standing Wave Diagram Application for drawing Standing Wave Diagrams, specifying the wave impedance whenever the wave changes mediums.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.