Weissach axle

Last updated

The Weissach axle (pronounced 'Vise-' as in 'advise' and '-ach' with guttural 'ch') is a rear suspension arrangement first used in the Porsche 928 (1978) and echoed in subsequent production models. The fully developed version was used in a Porsche 993 (911) in 1994. The goal of the Weissach axle was to eliminate lift-off oversteer by allowing the rear suspension to adjust itself during cornering manoeuvres and handle both longitudinal and lateral forces. [1]

Contents

Name

It is named after the town of Weissach, where the axle was developed at the Porsche research centre. [2] Weissach is also a backronym for Winkel einstellende, selbst stabilisierende Ausgleichs-Charakteristik (angle-adjusting, self-stabilizing equalization characteristic) [1]

Description

The Weissach axle is a variant of the semi-trailing arm suspension. The tendency of a vehicle to oversteer when decelerating is compounded by the compliant bushings found in most trailing arm suspensions. When the vehicle is decelerating, the trailing arm pivots towards the rear as the wheel is "pulled" backwards relative to the chassis. This results in toe out, which makes the vehicle unstable.

For the Weissach axle, the front pivot bushing of the trailing arm is replaced by a short link. In this arrangement, when the vehicle decelerates and the wheel is "pulled" back, the result is toe in. This adds to stability and thus, reduces oversteer.

Other manufacturers

The rear suspension of the second generation Mazda RX-7 the extra link is not used, a special bushing is used in the same position in the lower control arm to perform a similar function.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">MacPherson strut</span> Type of automotive suspension design

The MacPherson strut is a type of automotive suspension system that uses the top of a telescopic damper as the upper steering pivot. It is widely used in the front suspension of modern vehicles. The name comes from American automotive engineer Earle S. MacPherson, who invented and developed the design.

<span class="mw-page-title-main">Steering</span> System of components that allows vehicles to follow the desired course

Steering is a system of components, linkages, and other parts that allows a driver to control the direction of a vehicle.

<span class="mw-page-title-main">Torsion bar suspension</span> Vehicle suspension that uses a torsion bar

A torsion bar suspension, also known as a torsion spring suspension, is any vehicle suspension that uses a torsion bar as its main weight-bearing spring. One end of a long metal bar is attached firmly to the vehicle chassis; the opposite end terminates in a lever, the torsion key, mounted perpendicular to the bar, that is attached to a suspension arm, a spindle, or the axle. Vertical motion of the wheel causes the bar to twist around its axis and is resisted by the bar's torsion resistance. The effective spring rate of the bar is determined by its length, cross section, shape, material, and manufacturing process.

<span class="mw-page-title-main">Multi-link suspension</span> A type of vehicle suspension

A multi-link suspension is a type of vehicle suspension with one or more longitudinal arms. A wider definition can consider any independent suspensions having three control links or more multi-link suspensions. These arms do not have to be of equal length, and may be angled away from their "obvious" direction. It was first introduced in the late 1960s on the Mercedes-Benz C111 and later on their W201 and W124 series.

<span class="mw-page-title-main">Car suspension</span> Suspension system for a vehicle

Suspension is the system of tires, tire air, springs, shock absorbers and linkages that connects a vehicle to its wheels and allows relative motion between the two. Suspension systems must support both road holding/handling and ride quality, which are at odds with each other. The tuning of suspensions involves finding the right compromise. It is important for the suspension to keep the road wheel in contact with the road surface as much as possible, because all the road or ground forces acting on the vehicle do so through the contact patches of the tires. The suspension also protects the vehicle itself and any cargo or luggage from damage and wear. The design of front and rear suspension of a car may be different.

<span class="mw-page-title-main">Leaf spring</span> Simplest form of spring, mostly used for the suspension of cars

A leaf spring is a simple form of spring commonly used for suspension in wheeled vehicles. Originally called a laminated or carriage spring, and sometimes referred to as a semi-elliptical spring, elliptical spring, or cart spring, it is one of the oldest forms of vehicle suspension. A leaf spring is one or more narrow, arc-shaped, thin plates that are attached to the axle and chassis in a way that allows the leaf spring to flex vertically in response to irregularities in the road surface. Lateral leaf springs are the most commonly used arrangement, running the length of the vehicle and mounted perpendicular to the wheel axle, but numerous examples of transverse leaf springs exist as well.

<span class="mw-page-title-main">Independent suspension</span> Vehicle suspension in which each wheel is suspended independently

Independent suspension is any automobile suspension system that allows each wheel on the same axle to move vertically independently of the others. This is contrasted with a beam axle or deDion axle system in which the wheels are linked. "Independent" refers to the motion or path of movement of the wheels or suspension. It is common for the left and right sides of the suspension to be connected with anti-roll bars or other such mechanisms. The anti-roll bar ties the left and right suspension spring rates together but does not tie their motion together.

<span class="mw-page-title-main">Wheelbase</span> Distance between the centers of the front and rear wheels

In both road and rail vehicles, the wheelbase is the horizontal distance between the centers of the front and rear wheels. For road vehicles with more than two axles, the wheelbase is the distance between the steering (front) axle and the centerpoint of the driving axle group. In the case of a tri-axle truck, the wheelbase would be the distance between the steering axle and a point midway between the two rear axles.

<span class="mw-page-title-main">Double wishbone suspension</span> Automotive independent suspension design

A double wishbone suspension is an independent suspension design for automobiles using two wishbone-shaped arms to locate the wheel. Each wishbone or arm has two mounting points to the chassis and one joint at the knuckle. The shock absorber and coil spring mount to the wishbones to control vertical movement. Double wishbone designs allow the engineer to carefully control the motion of the wheel throughout suspension travel, controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff and more.

<span class="mw-page-title-main">Trailing-arm suspension</span> Form of vehicle suspension

A trailing-arm suspension, also referred to as trailing-link, is a form of vehicle suspension. In a motor vehicle it places one or more horizontal arms perpendicular to and forward of the axle on the chassis or unibody, which are connected to the axle or wheels with pivot joint(s). These are typically used on the rear axle or wheels of vehicles, but also found in both front and main landing gear of aircraft.

A swing axle is a simple type of independent suspension designed and patented by Edmund Rumpler in 1903. This was a revolutionary invention in automotive suspension, allowing driven (powered) wheels to follow uneven road surfaces independently, thus enabling the vehicle's wheels to maintain better road contact and holding; plus each wheel's reduced unsprung weight means their movements have less impact on the vehicle as a whole. The first automotive application was the Rumpler Tropfenwagen, later followed by the Mercedes 130H/150H/170H, the Standard Superior, the Volkswagen Beetle and its derivatives, the Chevrolet Corvair, and the roll-over prone M151 jeep amongst others.

<span class="mw-page-title-main">Anti-roll bar</span> Device that reduces the body roll of a vehicle

An anti-roll bar is a part of many automobile suspensions that helps reduce the body roll of a vehicle during fast cornering or over road irregularities. It connects opposite (left/right) wheels together through short lever arms linked by a torsion spring. An anti-roll bar increases the suspension's roll stiffness—its resistance to roll in turns—independent of its spring rate in the vertical direction. The first stabilizer bar patent was awarded to Canadian inventor Stephen Coleman of Fredericton, New Brunswick on April 22, 1919.

A Corvette leaf spring is a type of independent suspension that utilizes a fiber-reinforced plastic (FRP) mono-leaf spring instead of more conventional coil springs. It is named after the Chevrolet Corvette, the American sports car for which it was originally developed and first utilized. A notable characteristic of this suspension configuration is the mounting of the mono-leaf spring such that it can serve as both ride spring and anti-roll spring. In contrast to many applications of leaf springs in automotive suspension designs, this type does not use the spring as a locating link. While this suspension type is most notably associated with several generations of the Chevrolet Corvette the design has been used in other production General Motors cars, as well as vehicles from Volvo Cars and Mercedes-Benz Sprinter van. Fiat produced cars with a similar configuration, using a multi-leaf steel spring in place of the FRP mono-leaf spring.

A motorcycle's suspension serves a dual purpose: contributing to the vehicle's handling and braking, and providing safety and comfort by keeping the vehicle's passengers comfortably isolated from road noise, bumps and vibrations.

<span class="mw-page-title-main">Rocker-bogie</span>

The rocker-bogie system is the suspension arrangement developed in 1988 for use in NASA's Mars rover Sojourner, and which has since become NASA's favored design for rovers. It has been used in the 2003 Mars Exploration Rover mission robots Spirit and Opportunity, on the 2012 Mars Science Laboratory (MSL) mission's rover Curiosity, and the Mars 2020 rover Perseverance.

<span class="mw-page-title-main">Bump steer</span>

Bump steer is the term for the tendency of the wheel of a car to steer itself as it moves through the suspension stroke.

<span class="mw-page-title-main">Twist-beam rear suspension</span>

The twist-beam rear suspension is a type of automobile suspension based on a large H or C-shaped member. The front of the H attaches to the body via rubber bushings, and the rear of the H carries each stub-axle assembly, on each side of the car. The cross beam of the H holds the two trailing arms together, and provides the roll stiffness of the suspension, by twisting as the two trailing arms move vertically, relative to each other.

Motorcycle components and systems for a motorcycle are engineered, manufactured, and assembled in order to produce motorcycle models with the desired performance, aesthetics, and cost. The key components of modern motorcycles are presented below.

<span class="mw-page-title-main">Jaguar independent rear suspension</span> Common component of a number of Jaguar production cars since 1961

Jaguar's independent rear suspension (IRS) unit has been a common component of a number of Jaguar production cars since 1961, passing through two major changes of configuration up to 2006 and last used in the Jaguar XK8 and Aston Martin DB7. This article concentrates on the first generation Jaguar IRS, which firmly established the marque's reputation for suspension sophistication, combining as it did smooth ride with excellent roadholding and low levels of noise, vibration, and harshness (NVH). The two generations overlap in time due to their being used in both full size and sports models that were updated at different times.

<span class="mw-page-title-main">Platform chassis</span>

A platform chassis is a form of vehicle frame / automobile chassis, constructed as a flat plate or platform, sometimes integrating a backbone or frame-structure with a vehicle's floor-pan.

References