This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Company type | Division |
---|---|
Industry | Aerospace |
Founded | July 26, 1959 |
Headquarters | , United States |
Key people |
|
Parent | Westinghouse Electric Corporation |
The Westinghouse Astronuclear Laboratory (WANL) was a division of Westinghouse Electric Corporation. Established in 1959 to develop nuclear space propulsion technologies for the government, the lab was located, for most of its history, in the paradoxically small town of "Large" along Pa. Rte 51, about 13 miles (21 km) south of Pittsburgh in Allegheny County, Pennsylvania, USA. The site is not far from the Bettis Atomic Power Laboratory in West Mifflin, which Westinghouse operated during the same time and later.
Historical Note: The Large site is that of the former Large Distillery, [1] founded by Jonathan Large (1794-1862), who came to the area as a child in 1797 after the Whiskey Rebellion. The distillery originally produced Monongahela rye whiskey, which was a local favorite. Management of the distillery later passed to Jonathan's son, Henry, who ensured the distillery's success by making "Large Monongahela Rye Whiskey" a national brand. Eventually, the Large Distillery was sold to The National Distillery Company, which retired the Large label but continued to market the whiskey as Old Overholt.
The Large distillery eventually ceased operations and the property was sold to a developer who leased it to Westinghouse in the 1950s, and several of the warehouse buildings were adapted for developing and testing reactor plant components for the nuclear submarine development program underway at Bettis under the direction of Admiral Hyman G. Rickover.
The laboratory was officially founded as a Westinghouse division on July 26, 1959 with six employees and at first operated out of offices in the Pittsburgh suburb of Whitehall. Naval Academy graduate John W. Simpson headed the team with Cornell University physicist Sidney Krasik and Technical Director Frank Cotter as founding members. [2]
WANL's origins can be traced to 1959 when a dozen engineers and technical specialists from Bettis set up a lab in nearby Whitehall, Pa., for the purpose of bidding on government research and development contracts. In 1960, the operation moved to a new site in Mt. Lebanon, Pa., and continued efforts to land a major development contract.
In 1961, NASA's Space Nuclear Propulsion Office's project NERVA, [3] in conjunction with the Atomic Energy Commission, jointly awarded Aerojet General Corporation the prime contract for its Nuclear Engine for Rocket Vehicle Application NERVA Program, with a significant subcontract to WANL for development of the reactor itself. With the award, WANL selected the Large site as the base for operations and moved its personnel to the facility. Originally authorized in May 1959, WANL officially became a Westinghouse division on July 26, 1959 under the leadership of John Wistar Simpson. Cornell University physicist Sidney Krasik served as the first technical director and Frank Cotter was the first marketing director. Born in 1914, Simpson graduated from the United States Naval Academy in 1937 and earned an MS from the University of Pittsburgh in 1941. Working in the switchgear division of Westinghouse's East Pittsburgh plant, Simpson helped develop the electric switchboards that could survive the extreme impacts experienced by naval vessels in the Pacific Theater during World War II. In 1946, he took a leave of absence to work at Oak Ridge National Laboratory to familiarize himself with atomic power. Upon his return, he became assistant manager in the engineering department of the Westinghouse Bettis Atomic Power Laboratory. He subsequently managed the construction of the Shippingport Atomic Power Station in 1954, the first commercial nuclear power plant in the United States. Promoted the next year to general manager of the Bettis Laboratory, he was elected a Westinghouse vice president in 1958 and by 1959 was eager to take on the new challenge of developing nuclear rocket engines to enable the exploration of the solar system.
Under the NERVA contract, the initial objective was to build a rocket engine that could deliver at least 825 seconds of specific impulse, at least 50,000 pounds of thrust, at least 10 minutes of continuous operation at full thrust, and have the ability to start up on its own with no external energy source. Liquid hydrogen served as the propellant that was supplied to the reactor core by turbopumps and also provided regenerative cooling. The cylindrical graphite core was surrounded by twelve rotating control drums with beryllium on one side to reflect neutrons and boron on the other side to absorb neutrons to control the rate of the nuclear reaction in the core. The core consisted of clusters of hexagonal graphite fuel elements containing pyrographite-coated beads of uranium pellets coated with niobium carbide to prevent corrosion by exposure to the hydrogen propellant. Each fuel rod cluster was supported by an inconel tie rod. The fuel pellets were provided by Westinghouse Astrofuel's Cheswick plant in Allegheny County. Fuel element corrosion tests were first conducted at Cheswick, and later at the Westinghouse Waltz Mill facility in Westmoreland County.
The first proof of concept test of an assembled Westinghouse-Aerojet rocket engine (NRX-A2) was conducted at Jackass Flats, Nevada on September 24, 1964 that provided six minutes of continuous operation. By April 23, 1965 the NRX-A3 provided sixteen minutes of operation and a three-minute restart and incorporated pulse cooling for the first time. In 1966 the NRX-A5/EST delivered two separate periods of full power totaling 30 minutes. On December, 1967 the NRX-A6 delivered sixty minutes of operation at full power and on June 11, 1969 the XE engine was started twenty times for a total of three hours and forty-eight minutes, eleven of which were at full power. By 1970, the proposed NERVA I concept vehicle that evolved out of this work was projected to be capable of delivering 1500 MW of power and 75,000 pounds of thrust. It also had a projected lifetime runtime of ten hours and could be started and stopped up to 60 times while delivering a specific impulse of 850 seconds. Its total weight was less than 15,000 pounds. Westinghouse and Aerojet were ready to begin construction of the first flight engines to be launched from the Kennedy Space Center in Florida beginning in 1973 when the program was canceled. The total amount spent on the project up to that time was $1.45 billion and more than 1,100 people were employed by the project. A NASA plan released in 1969 to land the first humans on Mars by 1981 using the NERVA engines was also quietly shelved at that time. Government funding for the NERVA program was ended in 1972 due to "lack of clear requirements for its capabilities." However, work on the project helped achieve major milestones in developing high-temperature/high-strength materials technology, which finds application in aerospace and a myriad of private-sector industries. [4]
While other innovative projects (such as development of a fully implantable, self-contained, nuclear-powered artificial heart [5] ) were pursued into the mid-1970s, WANL ceased operations as a formal Westinghouse division shortly thereafter.
In 1976, the Company changed the name of the site to the Westinghouse Advanced Energy Systems Division (AESD), making it an R&D site for development of nonconventional renewable energy systems. According to the official announcement, AESD's mission would be "Engineering today's science into tomorrow's power systems." Under the leadership of Max Johnson, General Manager, AESD engineers designed and built prototype devices such as a heliostat, which was designed to concentrate sunlight (by means of a tracking, flat-mirror assembly) onto a fluid-filled tank mounted on a tower. This hot fluid could then be transferred to the ground and used to produce steam, spinning a turbine to generate electricity. [The Division's heliostat design resulted from a DoE sponsored competition in the late 1970s for the best design for use in the proposed "Solar One" power tower project near Barstow, California. A prototype was built at the Large site and shipped to the Mojave Desert for testing, but another design ultimately was selected.]
Among AESD's successes was the winning site and conceptual design proposal for the Solar Total Energy Project (STEP) in Shenandoah [now part of Newnan], Coweta County, Georgia, 35 miles (56 km) south of Atlanta along I-85. Financed as a joint project by Georgia Power Company [6] (part of Southern Company) and the U.S. Department of Energy, STEP operated from 1982 until 1989. Covering more than 5 acres (20,000 m2), it was the world's largest solar thermal [7] cogeneration project. It consisted of 114 tracking parabolic-dish collectors (7 m dia), which heated a transfer fluid that produced high-pressure steam for generating electricity that was fed to an adjacent knitwear factory owned and operated by Bleyle of Germany. Downstream of the turbine, medium-pressure steam was piped to the plant for knitwear pressing, and low-pressure steam was used to provide air conditioning. The project was dismantled in 1989 when the turbine failed and there were no funds to replace it or provide other needed maintenance on the facility.
Other work conducted at AESD included testing of nickel metal hydride battery prototypes. A phosphoric acid fuel cell was designed, built, and tested successfully. Dendritic web silicon photocells were built and tested, and that business was later sold and transferred to Solar Power Industries Inc. [8] of West Newton, Pa. AESD engineers also built a prototype for a magnetohydrodynamic (MHD) system utilizing hot plasma gases emitted by a coal-fired power plant. The exhaust gasses passed through a copper plate channel, generating additional electricity [up to 30%].
During the time that AESD was active, the Large site also housed the Westinghouse Fusion Power Systems Department (FPSD), which had a role in development and startup of the Tokamak Reactor at the Princeton Plasma Physics Laboratory (PPPL) in 1982. Along with the Advanced Coal Conversion Department (ACCD) and Advanced Reactors Division (ARD), AESD and FPSD constituted the Company's Advanced Power Systems Business Unit (APSBU), which was based at the Company's Waltz Mill Site in Madison, Pennsylvania, along I-70 a few miles west of the New Stanton interchange of the Pennsylvania Turnpike (I-76).
ACCD operated a coal gasification process demonstration unit (PDU), which was funded by DoE in the early 1970s, and conducted related research projects. ARD had the development contract for the planned Liquid Metal Fast Breeder Reactor (LMFBR) project at Clinch River, Tennessee, near the Oak Ridge National Laboratory.
The PDU gasifier [9] was eventually sold to Kellogg-Rust, which operated it as Kellogg-Rust-Westinghouse and later KRW Energy Systems. Funding for the LMFBR project was discontinued in 1983, and ARD was merged into AESD at the Large site under Dr. W. Howard Arnold. [10] At the same time, a new Waste Technology Services Division (WTSD), under Leo P. Duffy, [11] was formed to address nuclear waste handling and disposal issues. Both Arnold and Duffy had decades of nuclear-related experience with Westinghouse at Bettis, WANL, and government labs.
John Yasinsky, general manager of ACCD in the late 1970s, became general manager of the Advanced Power Systems Divisions in the early 1980s and was named CEO of Westinghouse Electric Corporation in the early 1990s. By 1995, Yasinsky had moved on to become chairman and CEO of GenCorp Inc., and Westinghouse acquired and merged with Columbia Broadcasting System (CBS), took the name CBS, and began selling off all nonbroadcast operations. This marked the end of the heritage Westinghouse Electric Corporation, although the name "Westinghouse" endures in various forms for companies in business sectors as diverse as commercial nuclear power, light bulbs, and large and small appliances.
The former WANL/AESD/FPSD Large site closed for good in the early 1990s, and space was leased to a range of commercial tenants. In 1994, a group of former employees at the site formed Pittsburgh Materials Technology Inc. (PMTI) [12] to build upon the capabilities developed by Westinghouse, including advanced refractory metal alloys. As of 2007, PMTI was still melting, processing and testing alloys such as niobium-base, tantalum-base, and vanadium-base compositions for a range of customers, particularly in the aerospace sector.
In May 2010, PMTI was acquired by Lancaster, Pennsylvania based Thermacore Inc. who renamed PMTI as Thermacore Materials Technology and moved operations to Rostraver, PA. Thermacore was acquired by Aavid and then by Boyd Corporation in 2017. Boyd Corporation subsequently shut down PMTI/Thermacore Materials Technology. Brazing equipment was transferred to Lancaster operations, and refractory alloy equipment was sold or retired. [13]
United States naval reactors are nuclear reactors used by the United States Navy aboard certain ships to generate the steam used to produce power for propulsion, electric power, catapulting airplanes in aircraft carriers, and a few more minor uses. Such naval nuclear reactors have a complete power plant associated with them. All commissioned U.S. Navy submarines and supercarriers built since 1975 are nuclear powered, with the last conventional carrier, USS Kitty Hawk, being decommissioned in May 2009. The U.S. Navy also had nine nuclear-powered cruisers with such reactors, but they have since been decommissioned as well.
A nuclear thermal rocket (NTR) is a type of thermal rocket where the heat from a nuclear reaction replaces the chemical energy of the propellants in a chemical rocket. In an NTR, a working fluid, usually liquid hydrogen, is heated to a high temperature in a nuclear reactor and then expands through a rocket nozzle to create thrust. The external nuclear heat source theoretically allows a higher effective exhaust velocity and is expected to double or triple payload capacity compared to chemical propellants that store energy internally.
Westinghouse may refer to:
The Westinghouse Electric Corporation was an American manufacturing company founded in 1886 by George Westinghouse. It was originally named "Westinghouse Electric & Manufacturing Company" and was renamed "Westinghouse Electric Corporation" in 1945. The company acquired the CBS television network in 1995 and was renamed "CBS Corporation" until being acquired by Viacom in 1999, a merger completed in April 2000. The CBS Corporation name was later reused for one of the two companies resulting from the split of Viacom in 2005.
A nuclear and radiation accident is defined by the International Atomic Energy Agency (IAEA) as "an event that has led to significant consequences to people, the environment or the facility." Examples include lethal effects to individuals, large radioactivity release to the environment, or a reactor core melt. The prime example of a "major nuclear accident" is one in which a reactor core is damaged and significant amounts of radioactive isotopes are released, such as in the Chernobyl disaster in 1986 and Fukushima nuclear disaster in 2011.
NRX was a heavy-water-moderated, light-water-cooled, nuclear research reactor at the Canadian Chalk River Laboratories, which came into operation in 1947 at a design power rating of 10 MW (thermal), increasing to 42 MW by 1954. At the time of its construction, it was Canada's most expensive science facility and the world's most powerful nuclear research reactor. NRX was remarkable both in terms of its heat output and the number of free neutrons it generated. When a nuclear reactor such as NRX is operating, its nuclear chain reaction generates many free neutrons. In the late 1940s, NRX was the most intense neutron source in the world.
Chalk River Laboratories is a Canadian nuclear research facility in Deep River, about 180 km (110 mi) north-west of Ottawa.
Project Prometheus was established in 2003 by NASA to develop nuclear-powered systems for long-duration space missions. This was NASA's first serious foray into nuclear spacecraft propulsion since the cancellation of the SNTP project in 1995. The project was planned to design, develop, and fly multiple deep space missions to the outer planets.
Bettis Atomic Power Laboratory is a U.S. Government-owned research and development facility in the Pittsburgh suburb of West Mifflin, Pennsylvania, that works exclusively on the design and development of nuclear power for the U.S. Navy. It was one of the leaders in creating the nuclear navy.
The Nuclear Engine for Rocket Vehicle Application was a nuclear thermal rocket engine development program that ran for roughly two decades. Its principal objective was to "establish a technology base for nuclear rocket engine systems to be utilized in the design and development of propulsion systems for space mission application". It was a joint effort of the Atomic Energy Commission (AEC) and the National Aeronautics and Space Administration (NASA), and was managed by the Space Nuclear Propulsion Office (SNPO) until the program ended in January 1973. SNPO was led by NASA's Harold Finger and AEC's Milton Klein.
Atomic Energy of Canada Limited (AECL) is a Canadian federal Crown corporation and Canada's largest nuclear science and technology laboratory. AECL developed the CANDU reactor technology starting in the 1950s, and in October 2011 licensed this technology to Candu Energy.
The Shippingport Atomic Power Station was the world's first full-scale atomic electric power plant devoted exclusively to peacetime uses. It was located near the present-day Beaver Valley Nuclear Generating Station on the Ohio River in Beaver County, Pennsylvania, United States, about 25 miles (40 km) from Pittsburgh.
SNAP-10A was a US experimental nuclear powered satellite launched into space in 1965 as part of the SNAPSHOT program. The test marked both the world's first operation of a nuclear reactor in orbit, and the first operation of an ion thruster system in orbit. It is the only fission reactor power system launched into space by the United States. The reactor stopped working after just 43 days due to a non-nuclear electrical component failure. The Systems Nuclear Auxiliary Power Program reactor was specifically developed for satellite use in the 1950s and early 1960s under the supervision of the U.S. Atomic Energy Commission.
Ernest Joachim Sternglass was a professor emeritus at the University of Pittsburgh and director of the Radiation and Public Health Project. He is an American physicist and author, best known for his controversial research on the health risks of low-level radiation from atmospheric testing of nuclear weapons and from nuclear power plants.
Carolinas–Virginia Tube Reactor (CVTR), also known as Parr Nuclear Station, was an experimental pressurized tube heavy water nuclear power reactor at Parr, South Carolina in Fairfield County. It was built and operated by the Carolinas Virginia Nuclear Power Associates. CVTR was a small test reactor, capable of generating 17 megawatts of electricity. It was officially commissioned in December 1963 and left service in January 1967.
Westinghouse Advanced Energy Systems Division (AESD) was a research and development facility for nonconventional renewable energy systems, in the small town of Large in Allegheny County, Pennsylvania [USA]. The site is on the east side of Pa. Rte. 51, about 13 miles (21 km) south of Pittsburgh. Formerly the site of the Westinghouse Astronuclear Laboratory (WANL), Westinghouse Electric Corporation changed the name of the facility, along with its charter, in 1977.
Walter Guy Roman, was born in Aspen, Colorado and died in Gaithersburg, Maryland. Walter was a son of Erick Roman and Selma Coles.
Project Rover was a United States project to develop a nuclear-thermal rocket that ran from 1955 to 1973 at the Los Alamos Scientific Laboratory (LASL). It began as a United States Air Force project to develop a nuclear-powered upper stage for an intercontinental ballistic missile (ICBM). The project was transferred to NASA in 1958 after the Sputnik crisis triggered the Space Race. It was managed by the Space Nuclear Propulsion Office (SNPO), a joint agency of the Atomic Energy Commission (AEC), and NASA. Project Rover became part of NASA's Nuclear Engine for Rocket Vehicle Application (NERVA) project and henceforth dealt with the research into nuclear rocket reactor design, while NERVA involved the overall development and deployment of nuclear rocket engines, and the planning for space missions.
The United States Space Nuclear Propulsion Office (SNPO) was a US government agency created in 1961 in response to NASA Marshall Space Flight Center's desire to explore the use of nuclear thermal rockets created by Project Rover in NASA space exploration activities.
A thermal rocket is a rocket engine that uses a propellant that is externally heated before being passed through a nozzle to produce thrust, as opposed to being internally heated by a redox (combustion) reaction as in a chemical rocket.
{{cite web}}
: CS1 maint: archived copy as title (link)