Willmore energy

Last updated
"Willmore Surface" sculpture at Durham University in memory of Thomas Willmore Willmore Surface sculpture Durham.jpg
"Willmore Surface" sculpture at Durham University in memory of Thomas Willmore

In differential geometry, the Willmore energy is a quantitative measure of how much a given surface deviates from a round sphere. Mathematically, the Willmore energy of a smooth closed surface embedded in three-dimensional Euclidean space is defined to be the integral of the square of the mean curvature minus the Gaussian curvature. It is named after the English geometer Thomas Willmore.

Contents

Definition

Expressed symbolically, the Willmore energy of S is:

where is the mean curvature, is the Gaussian curvature, and dA is the area form of S. For a closed surface, by the Gauss–Bonnet theorem, the integral of the Gaussian curvature may be computed in terms of the Euler characteristic of the surface, so

which is a topological invariant and thus independent of the particular embedding in that was chosen. Thus the Willmore energy can be expressed as

An alternative, but equivalent, formula is

where and are the principal curvatures of the surface.

Properties

The Willmore energy is always greater than or equal to zero. A round sphere has zero Willmore energy.

The Willmore energy can be considered a functional on the space of embeddings of a given surface, in the sense of the calculus of variations, and one can vary the embedding of a surface, while leaving it topologically unaltered.

Critical points

A basic problem in the calculus of variations is to find the critical points and minima of a functional.

For a given topological space, this is equivalent to finding the critical points of the function

since the Euler characteristic is constant.

One can find (local) minima for the Willmore energy by gradient descent, which in this context is called Willmore flow.

For embeddings of the sphere in 3-space, the critical points have been classified: [1] they are all conformal transforms of minimal surfaces, the round sphere is the minimum, and all other critical values are integers greater than 4. They are called Willmore surfaces.

Willmore flow

The Willmore flow is the geometric flow corresponding to the Willmore energy; it is an -gradient flow.

where H stands for the mean curvature of the manifold .

Flow lines satisfy the differential equation:

where is a point belonging to the surface.

This flow leads to an evolution problem in differential geometry: the surface is evolving in time to follow variations of steepest descent of the energy. Like surface diffusion it is a fourth-order flow, since the variation of the energy contains fourth derivatives.

Applications

See also

Notes

  1. Bryant, Robert L. (1984), "A duality theorem for Willmore surfaces", Journal of Differential Geometry , 20 (1): 23–53, doi: 10.4310/jdg/1214438991 , MR   0772125 .
  2. Müller, Stefan; Röger, Matthias (May 2014). "Confined structures of least bending energy". Journal of Differential Geometry. 97 (1): 109–139. arXiv: 1308.2530 . doi: 10.4310/jdg/1404912105 .

Related Research Articles

<span class="mw-page-title-main">Surface (topology)</span> Two-dimensional manifold

In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.

<span class="mw-page-title-main">Gauss–Bonnet theorem</span> Differential geometry theorem

In the mathematical field of differential geometry, the Gauss–Bonnet theorem is a fundamental formula which links the curvature of a surface to its underlying topology.

In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by .

<span class="mw-page-title-main">Gaussian curvature</span> Product of the principal curvatures of a surface

In differential geometry, the Gaussian curvature or Gauss curvatureΚ of a smooth surface in three-dimensional space at a point is the product of the principal curvatures, κ1 and κ2, at the given point:

In mathematics, the Chern theorem states that the Euler–Poincaré characteristic of a closed even-dimensional Riemannian manifold is equal to the integral of a certain polynomial of its curvature form.

<span class="mw-page-title-main">Sphere eversion</span> Topological operation of turning a sphere inside-out without creasing

In differential topology, sphere eversion is the process of turning a sphere inside out in a three-dimensional space. Remarkably, it is possible to smoothly and continuously turn a sphere inside out in this way without cutting or tearing it or creating any crease. This is surprising, both to non-mathematicians and to those who understand regular homotopy, and can be regarded as a veridical paradox; that is something that, while being true, on first glance seems false.

Bosonic string theory is the original version of string theory, developed in the late 1960s and named after Satyendra Nath Bose. It is so called because it contains only bosons in the spectrum.

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

In mathematics, Hopf conjecture may refer to one of several conjectural statements from differential geometry and topology attributed to Heinz Hopf.

In mathematics, in the field of differential geometry, the Yamabe invariant, also referred to as the sigma constant, is a real number invariant associated to a smooth manifold that is preserved under diffeomorphisms. It was first written down independently by O. Kobayashi and R. Schoen and takes its name from H. Yamabe. Used by Vincent Moncrief and Arthur Fischer to study reduced Hamiltonian for Einstein's equations.

In the field of differential geometry in mathematics, mean curvature flow is an example of a geometric flow of hypersurfaces in a Riemannian manifold. Intuitively, a family of surfaces evolves under mean curvature flow if the normal component of the velocity of which a point on the surface moves is given by the mean curvature of the surface. For example, a round sphere evolves under mean curvature flow by shrinking inward uniformly. Except in special cases, the mean curvature flow develops singularities.

In the mathematical theory of Riemann surfaces, the first Hurwitz triplet is a triple of distinct Hurwitz surfaces with the identical automorphism group of the lowest possible genus, namely 14. The explanation for this phenomenon is arithmetic. Namely, in the ring of integers of the appropriate number field, the rational prime 13 splits as a product of three distinct prime ideals. The principal congruence subgroups defined by the triplet of primes produce Fuchsian groups corresponding to the triplet of Riemann surfaces.

<span class="mw-page-title-main">Willmore conjecture</span> Lower bound on the integrated squared mean curvature of a torus

In differential geometry, the Willmore conjecture is a lower bound on the Willmore energy of a torus. It is named after the English mathematician Tom Willmore, who conjectured it in 1965. A proof by Fernando Codá Marques and André Neves was announced in 2012 and published in 2014.

In the mathematical field of differential geometry, a geometric flow, also called a geometric evolution equation, is a type of partial differential equation for a geometric object such as a Riemannian metric or an embedding. It is not a term with a formal meaning, but is typically understood to refer to parabolic partial differential equations.

<span class="mw-page-title-main">Differential geometry of surfaces</span> The mathematics of smooth surfaces

In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.

The Hawking energy or Hawking mass is one of the possible definitions of mass in general relativity. It is a measure of the bending of ingoing and outgoing rays of light that are orthogonal to a 2-sphere surrounding the region of space whose mass is to be defined.

In mathematics, the Riemannian connection on a surface or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form. These concepts were put in their current form with principal bundles only in the 1950s. The classical nineteenth century approach to the differential geometry of surfaces, due in large part to Carl Friedrich Gauss, has been reworked in this modern framework, which provides the natural setting for the classical theory of the moving frame as well as the Riemannian geometry of higher-dimensional Riemannian manifolds. This account is intended as an introduction to the theory of connections.

<span class="mw-page-title-main">Constant-mean-curvature surface</span>

In differential geometry, constant-mean-curvature (CMC) surfaces are surfaces with constant mean curvature. This includes minimal surfaces as a subset, but typically they are treated as special case.

In differential geometry, Cohn-Vossen's inequality, named after Stefan Cohn-Vossen, relates the integral of Gaussian curvature of a non-compact surface to the Euler characteristic. It is akin to the Gauss–Bonnet theorem for a compact surface.

In mathematics, and especially differential and algebraic geometry, K-stability is an algebro-geometric stability condition, for complex manifolds and complex algebraic varieties. The notion of K-stability was first introduced by Gang Tian and reformulated more algebraically later by Simon Donaldson. The definition was inspired by a comparison to geometric invariant theory (GIT) stability. In the special case of Fano varieties, K-stability precisely characterises the existence of Kähler–Einstein metrics. More generally, on any compact complex manifold, K-stability is conjectured to be equivalent to the existence of constant scalar curvature Kähler metrics.

References