Xenoturbella profunda

Last updated

Xenoturbella profunda
Xenoturbella japonica.jpg
A congeneric species of X. profunda ( X. japonica )
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Xenacoelomorpha
Family: Xenoturbellidae
Genus: Xenoturbella
Species:
X. profunda
Binomial name
Xenoturbella profunda
Rouse, Wilson, Carvajal & Vrijenhoek, 2016 [1]
Longitudinal section of a congeneric species, Xenoturbella bocki Xenoturbella bockii longitudinal section English.svg
Longitudinal section of a congeneric species, Xenoturbella bocki

Xenoturbella profunda, the purple sock or sock worm, [2] is a marine, benthic, deep-water worm-like species that belongs to the genus Xenoturbella . It was discovered in eastern Pacific Ocean by a group of Californian and Australian scientists. [3] [4] [5] The species was described in 2016 from seven specimens. [1]

Contents

X. profunda shares morphological similarities with other species of the genus Xenoturbella, and is known for lacking respiratory, circulatory and an excretory system. [6]

Description

The etymology of the species name refers to the fact that it lives deepest of the known xenoturbellids. [7]

Xenoturbella profunda individuals were sampled at ca. 3,700 m (12,100 ft) depth near a carbonate-hosted hydrothermal vent in the Gulf of California. [8] This animal is 15 cm (5.9 in) in length, with a uniform pale pink colouration. The body wall displays several furrows: on the circumference, on the side, and two deep, longitudinal, dorsal ones. The longitudinal orientation involves a rounded anterior end, while the posterior end gradually reduces in thickness. The mouth is orientated ventrally, anterior to the ring furrow. The live specimens exhibited an epidermal ventral glandular network branching over two-thirds of the ventral surface. The species is gonochoric, and gametes are present dorsally and ventrally in the body wall. [1] Tissues contain exogenous DNA corresponding to a bivalve mollusk, the vesicomyid Archivesica gigas. [1]

Phylogeny

Comparison of mitochondrial DNA and protein sequences showed that the species X. profunda is the sister group to X. churro. In turn, these two species share evolutionary affinities with X. monstrosa into a clade of 'deep-water' taxa.

Species-level cladogram of the genus Xenoturbella.
   Xenacoelomorpha   
   Xenoturbella   
  'Shallow' clade  
         

  X. japonica

         

  X. bocki

  X. hollandorum

  'Deep' clade  
         

  X. monstrosa

         

  X. churro

  X. profunda

  Acoelomorpha  

The cladogram has been reconstructed from mitochondrial DNA and protein sequences. [1] [9]

Related Research Articles

<span class="mw-page-title-main">Siboglinidae</span> Family of annelid worms

Siboglinidae is a family of polychaete annelid worms whose members made up the former phyla Pogonophora and Vestimentifera. The family is composed of around 100 species of vermiform creatures which live in thin tubes buried in sediment (Pogonophora) or in tubes attached to hard substratum (Vestimentifera) at ocean depths ranging from 100 to 10,000 m. They can also be found in association with hydrothermal vents, methane seeps, sunken plant material, and whale carcasses.

<span class="mw-page-title-main">Marine worm</span>

Any worm that lives in a marine environment is considered a marine worm. Marine worms are found in several different phyla, including the Platyhelminthes, Nematoda, Annelida, Chaetognatha, Hemichordata, and Phoronida. For a list of marine animals that have been called "sea worms", see sea worm.

<span class="mw-page-title-main">Bilateria</span> Animals with embryonic bilateral symmetry

Bilateria is a large clade/infrakingdom of animals called bilaterians, characterized by bilateral symmetry during embryonic development. This means their body plans are laid around a longitudinal axis with a front and a rear end, as well as a left–right–symmetrical belly (ventral) and back (dorsal) surface. Nearly all bilaterians maintain a bilaterally symmetrical body as adults; the most notable exception is the echinoderms, which achieve secondary pentaradial symmetry as adults, but are bilaterally symmetrical as an embryo. Cephalization is also a characteristic feature among most bilaterians, where the special sense organs and central nerve ganglia become concentrated at the front/rostral end.

<span class="mw-page-title-main">Hydrothermal vent</span> Fissure in a planets surface from which heated water emits

Hydrothermal vents are fissures on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspots. Hydrothermal deposits are rocks and mineral ore deposits formed by the action of hydrothermal vents.

<i>Riftia pachyptila</i> Giant tube worm (species of annelid)

Riftia pachyptila, commonly known as the giant tube worm and less commonly known as the giant beardworm, is a marine invertebrate in the phylum Annelida related to tube worms commonly found in the intertidal and pelagic zones. R. pachyptila lives on the floor of the Pacific Ocean near hydrothermal vents. The vents provide a natural ambient temperature in their environment ranging from 2 to 30 °C, and this organism can tolerate extremely high hydrogen sulfide levels. These worms can reach a length of 3 m, and their tubular bodies have a diameter of 4 cm (1.6 in).

<span class="mw-page-title-main">Acoelomorpha</span> Phylum of marine, flatworm-like animals

Acoelomorpha is a subphylum of very simple and small soft-bodied animals with planula-like features which live in marine or brackish waters. They usually live between grains of sediment, swimming as plankton, or crawling on other organisms, such as algae and corals. With the exception of two acoel freshwater species, all known Acoelomorphs are marine.

<i>Xenoturbella</i> Genus of bilaterians with a simple body plan

Xenoturbella is a genus of very simple bilaterians up to a few centimeters long. It contains a small number of marine benthic worm-like species.

<i>Kiwa hirsuta</i> Species of crustacean

Kiwa hirsuta is a crustacean discovered in 2005 in the South Pacific Ocean. This decapod, which is approximately 15 cm (5.9 in) long, is notable for the quantity of silky blond setae covering its pereiopods. Its discoverers dubbed it the "yeti lobster" or "yeti crab".

<i>Kiwa</i> (crustacean) Genus of crustaceans

Kiwa is a genus of marine decapods living at deep-sea hydrothermal vents and cold seeps. The animals are commonly referred to as "yeti lobsters" or "yeti crabs”, after the legendary yeti, because of their "hairy" or bristly appearance. The genus is placed in its own family, Kiwaidae, in the superfamily Chirostyloidea.

<i>Lamellibrachia</i> Genus of annelids

Lamellibrachia is a genus of tube worms related to the giant tube worm, Riftia pachyptila. They live at deep-sea cold seeps where hydrocarbons leak out of the seafloor, and are entirely reliant on internal, sulfide-oxidizing bacterial symbionts for their nutrition. The symbionts, gammaproteobacteria, require sulfide and inorganic carbon. The tube worms extract dissolved oxygen and hydrogen sulfide from the sea water with the crown of plumes. Species living near seeps can also obtain sulfide through their "roots", posterior extensions of their body and tube. Several sorts of hemoglobin are present in the blood and coelomic fluid to bind to the different components and transport them to the symbionts.

<span class="mw-page-title-main">Ambulacraria</span> Clade of deuterostomes containing echinoderms and hemichordates

Ambulacraria, or Coelomopora, is a clade of invertebrate phyla that includes echinoderms and hemichordates; a member of this group is called an ambulacrarian. Phylogenetic analysis suggests the echinoderms and hemichordates separated around 533 million years ago. The Ambulacraria are part of the deuterostomes, a clade that also includes the many Chordata, and the few extinct species belonging to the Vetulicolia.

<span class="mw-page-title-main">Deuterostome</span> Superphylum of bilateral animals

Deuterostomes are bilaterian animals of the superphylum Deuterostomia, typically characterized by their anus forming before the mouth during embryonic development. The three major clades of extant deuterostomes include chordates, echinoderms and hemichordates.

Swima bombiviridis is a worm species that lives in the deep ocean. It is also known as the green bomber worm or bombardier worm. This deep ocean pelagic (free-swimming) annelid has modified bioluminescent gills that can be cast off from an individual. These discarded gills somewhat resemble green "bombs" that remain illuminated for several seconds after they have been discarded. It is thought that this is a defensive mechanism rather than reproductive, as it is seen in both mature and juvenile individuals. This species was the first of its genus, Swima, to be discovered, and was the only one with a formal scientific name as of 2010. The genus name, Swima, is derived from the Latin, referring to the animal's ability to swim. The species name, bombiviridis, is derived from the Latin prefix bombus, meaning humming or buzzing, and the suffix viridis, which is Latin for the color green. Swima bombiviridis therefore translates to "swimming green bomber".

<span class="mw-page-title-main">Xenacoelomorpha</span> A deep-branching bilaterian clade of animals with a simple body plan

Xenacoelomorpha is a small phylum of bilaterian invertebrate animals, consisting of two sister groups: xenoturbellids and acoelomorphs. This new phylum was named in February 2011 and suggested based on morphological synapomorphies, which was then confirmed by phylogenomic analyses of molecular data.

<i>Eulagisca gigantea</i> Species of annelid worm

Eulagisca gigantea is a species of scale worm. This species is specifically found in the deep-sea in cold waters like the Antarctic Ocean. The scale worms are named for the elytra on their surface that look like scales

<i>Xenoturbella japonica</i> Species of bilaterians with a simple body plan

Xenoturbella japonica is a marine benthic worm-like species that belongs to the genus Xenoturbella. It has been discovered in western Pacific Ocean by a group of Japanese scientists from the University of Tsukuba. The species was described in 2017 in a study published in the journal BMC Evolutionary Biology, and amended in 2018.

<i>Xenoturbella bocki</i> Species of bilaterians with a simple body plan

Xenoturbella bocki is a marine benthic worm-like species from the genus Xenoturbella. It is found in saltwater sea floor habitats off the coast of Europe, predominantly Sweden. It was the first species in the genus discovered. Initially it was collected by Swedish zoologist Sixten Bock in 1915, and described in 1949 by Swedish zoologist Einar Westblad. The unusual digestive structure of this species, in which a single opening is used to eat food and excrete waste, has led to considerable study and controversy as to its classification. It is a bottom-dwelling, burrowing carnivore that eats mollusks.

<i>Xenoturbella churro</i> Species of bilaterians with a simple body plan

Xenoturbella churro is a marine, benthic, deep-water worm-like species that belongs to the genus Xenoturbella. It was discovered in eastern Pacific Ocean by a group of Californian and Australian scientists. The species was described in 2016 from a single specimen.

<i>Xenoturbella monstrosa</i> Species of bilaterians with a simple body plan

Xenoturbella monstrosa, a deep-sea giant purple sock worm, is a marine, benthic, deep-water worm-like species that belongs to the genus Xenoturbella. It was discovered in eastern Pacific Ocean by a group of Californian and Australian scientists. The species was described in 2016 from several specimens.

<i>Xenoturbella hollandorum</i> Species of bilaterians with a simple body plan

Xenoturbella hollandorum is a marine, benthic worm-like species that belongs to the genus Xenoturbella. It was discovered in eastern Pacific Ocean by a group of Californian and Australian scientists. The species was described in 2016.

References

  1. 1 2 3 4 5 Rouse, Greg W.; Wilson, Nerida G.; Carvajal, Jose I.; Vrijenhoek, Robert C. (2016-02-04). "New deep-sea species of Xenoturbella and the position of Xenacoelomorpha". Nature. 530 (7588): 94–97. Bibcode:2016Natur.530...94R. doi:10.1038/nature16545. ISSN   0028-0836. PMID   26842060. S2CID   3870574.
  2. "The deep sea: Where poisons become nutrients". Deutsche Welle (www.dw.com). Retrieved 2020-03-11.
  3. Khan, Amina (2016-02-05). "Newly discovered deep-sea worms, including one named 'churro,' could shed light on animal evolution". Los Angeles Times. Retrieved 2020-03-10.
  4. Morelle, Rebecca (2016-02-03). "Mystery of 'sock of the deep' solved". BBC News. Retrieved 2020-03-10.
  5. "We finally know what to make of these 'purple sock' creatures that litter the sea floor". ZME Science. 2016-02-05. Retrieved 2020-03-11.
  6. Nakano, Hiroaki (2015). "What is Xenoturbella?". Zoological Letters. 1 (22): 22. doi: 10.1186/s40851-015-0018-z . PMC   4657256 . PMID   26605067.
  7. "Around the Pier: Churro-Like Marine Worm Discovered by Scripps Scientists Is One of the 'Top 10 Species of 2017'". Scripps Institution of Oceanography. 2017-05-30. Retrieved 2020-03-10.
  8. Goffredi, Shana K.; Johnson, Shannon; Tunnicliffe, Verena; Caress, David; Clague, David; Escobar, Elva; Lundsten, Lonny; Paduan, Jennifer B.; Rouse, Greg; Salcedo, Diana L.; Soto, Luis A. (2017-07-26). "Hydrothermal vent fields discovered in the southern Gulf of California clarify role of habitat in augmenting regional diversity". Proceedings of the Royal Society B: Biological Sciences. 284 (1859): 20170817. doi:10.1098/rspb.2017.0817. PMC   5543219 . PMID   28724734.
  9. Nakano, Hiroaki; Miyazawa, Hideyuki; Maeno, Akiteru; Shiroishi, Toshihiko; Kakui, Keiichi; Koyanagi, Ryo; Kanda, Miyuki; Satoh, Noriyuki; Omori, Akihito; Kohtsuka, Hisanori (2017-12-18). "A new species of Xenoturbella from the western Pacific Ocean and the evolution of Xenoturbella". BMC Evolutionary Biology. 17 (1): 245. doi: 10.1186/s12862-017-1080-2 . ISSN   1471-2148. PMC   5733810 . PMID   29249199.