Xilingolite

Last updated
Xilingolite
General
Category Sulfosalt minerals
Formula
(repeating unit)
Pb3Bi2S6
IMA symbol Xil [1]
Strunz classification 2.JB.40a
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group C2/m
Unit cell a = 13.65  Å, b = 4.07 Å
c = 20.68 Å; β = 93°; Z = 4
Identification
Formula mass 1,231.96 g/mol
ColorLead grey
Crystal habit Elongated and striated prismatic crystals
Twinning On {001}
Mohs scale hardness3 (calcite)
Luster Metallic
Streak Grey
Diaphaneity opaque
Specific gravity 7.08
References [2] [3] [4]

Xilingolite is a lead sulfide mineral with formula Pb3Bi2S6. [2] It has a hardness of 3, a metallic luster, and usually exhibits a lead-grey color. It is a dimorph of lillianite, exhibiting increased Pb-Bi order and decreased symmetry. [2]

Its crystal system is monoclinic, with three axes of unequal length two of which are at an oblique angle to each other while the third axis is perpendicular to the plane formed by the other two. [2] Xilingolite is opaque, meaning that its internal structure does not allow for light to be transmitted through it. [2] The mineral also exhibits white to blue-tinted-white pleochroism under reflected light. [2]

Discovery and occurrence

Xilingolite was first described in 1982 for an occurrence in an iron-rich skarn deposit in the Chaobuleng district of the Xilingoa League, Inner Mongolia Autonomous Region, China. Its name is derived from the locality in which it was originally found. Xilingolite is also known to occur in various localities in Valais, Switzerland. [2] [3] At the type locality it occurs associated with magnetite, sphalerite, pyrrhotite, pyrite, arsenopyrite, chalcopyrite, digenite, bornite, molybdenite, galena, native bismuth and bismuthinite. [4]

Related Research Articles

<span class="mw-page-title-main">Cerussite</span> Lead carbonate mineral

Cerussite (also known as lead carbonate or white lead ore) is a mineral consisting of lead carbonate (PbCO3), and is an important ore of lead. The name is from the Latin cerussa, white lead. Cerussa nativa was mentioned by Conrad Gessner in 1565, and in 1832 F. S. Beudant applied the name céruse to the mineral, whilst the present form, cerussite, is due to W. Haidinger (1845). Miners' names in early use were lead-spar and white-lead-ore.

<span class="mw-page-title-main">Wulfenite</span> Molybdate mineral

Wulfenite is a lead molybdate mineral with the formula PbMoO4. It can be most often found as thin tabular crystals with a bright orange-red to yellow-orange color, sometimes brown, although the color can be highly variable. In its yellow form it is sometimes called "yellow lead ore".

<span class="mw-page-title-main">Anglesite</span> Lead sulfate mineral

Anglesite is a lead sulfate mineral with the chemical formula PbSO4. It occurs as an oxidation product of primary lead sulfide ore, galena. Anglesite occurs as prismatic orthorhombic crystals and earthy masses, and is isomorphous with barite and celestine. It contains 74% of lead by mass and therefore has a high specific gravity of 6.3. Anglesite's color is white or gray with pale yellow streaks. It may be dark gray if impure.

<span class="mw-page-title-main">Murdochite</span>

Murdochite is a mineral combining lead and copper oxides with the chemical formula PbCu
6
O
8−x
(Cl,Br)
2x
 (x ≤ 0.5).

<span class="mw-page-title-main">Cotunnite</span>

Cotunnite is the natural mineral form of lead(II) chloride (PbCl2). Unlike the pure compound, which is white, cotunnite can be white, yellow, or green. The density of mineral samples spans range 5.3–5.8 g/cm3. The hardness on the Mohs scale is 1.5–2. The crystal structure is orthorhombic dipyramidal and the point group is 2/m 2/m 2/m. Each Pb has a coordination number of 9. Cotunnite occurs near volcanoes: Vesuvius, Italy; Tarapacá, Chile; and Tolbachik, Russia.

<span class="mw-page-title-main">Leadhillite</span> Lead sulfate carbonate hydroxide mineral

Leadhillite is a lead sulfate carbonate hydroxide mineral, often associated with anglesite. It has the formula Pb4SO4(CO3)2(OH)2. Leadhillite crystallises in the monoclinic system, but develops pseudo-hexagonal forms due to crystal twinning. It forms transparent to translucent variably coloured crystals with an adamantine lustre. It is quite soft with a Mohs hardness of 2.5 and a relatively high specific gravity of 6.26 to 6.55.

<span class="mw-page-title-main">Hutchinsonite</span>

Hutchinsonite is a sulfosalt mineral of thallium, arsenic and lead with formula (Tl,Pb)2As5S9. Hutchinsonite is a rare hydrothermal mineral.

<span class="mw-page-title-main">Baumhauerite</span>

Baumhauerite (Pb3As4S9) is a rare lead sulfosalt mineral. It crystallizes in the triclinic system, is gray-black to blue-gray and its lustre is metallic to dull. Baumhauerite has a hardness of 3.

Cleusonite is a member of the crichtonite group of minerals with the chemical formula (Pb,Sr)(U4+
,U6+
)(Fe2+
,Zn)
2
(Ti,Fe2+
,Fe3+
)
18
(O,OH)
38
. This group of minerals contains approximately thirteen complex metal titanates. The structures of minerals of this group is complicated by frequent fine-scale twinning and metamictization due to radioactive elements. The crichtonite group consists of members of related mineral species of the type A{BC2D6E12}O38 which are characterized by their predominant cations (as seen in crichtonite (Sr), senaite (Pb), davidite (REE + U), landauite (Na), loveringite (Ca), lindsleyite (Ba), and mathiasite (K).

<span class="mw-page-title-main">Plumbogummite</span> Alunite supergroup, phosphate mineral

Plumbogummite is a rare secondary lead phosphate mineral, belonging to the alunite supergroup of minerals, crandallite subgroup. Some other members of this subgroup are:

<span class="mw-page-title-main">Tsumebite</span>

Tsumebite is a rare phosphate mineral named in 1912 after the locality where it was first found, the Tsumeb mine in Namibia, well known to mineral collectors for the wide range of minerals found there. Tsumebite is a compound phosphate and sulfate of lead and copper, with hydroxyl, formula Pb2Cu(PO4)(SO4)(OH). There is a similar mineral called arsentsumebite, where the phosphate group PO4 is replaced by the arsenate group AsO4, giving the formula Pb2Cu(AsO4)(SO4)(OH). Both minerals are members of the brackebuschite group.

<span class="mw-page-title-main">Marrite</span>

Marrite (mar'-ite) is a mineral with the chemical formula PbAgAsS3. It is the arsenic equivalent of freieslebenite (PbAgSbS3), but also displays close polyhedral characteristics with sicherite and diaphorite. Marrite was named in honor of geologist John Edward Marr (1857–1933) of Cambridge, England.

<span class="mw-page-title-main">Gabrielite</span> Sulfosalt mineral

Gabrielite is a rare thallium sulfosalt mineral with a chemical formula of Tl6Ag3Cu6(As,Sb)9S21 or Tl2AgCu2As3S7.

<span class="mw-page-title-main">Matlockite</span>

Matlockite is a rare lead halide mineral, named after the town of Matlock in Derbyshire, England, where it was first discovered in a nearby mine. Matlockite gives its name to the matlockite group which consists of rare minerals of a similar structure.

<span class="mw-page-title-main">Tsumcorite</span>

Tsumcorite is a rare hydrated lead arsenate mineral that was discovered in 1971, and reported by Geier, Kautz and Muller. It was named after the TSUMeb CORporation mine at Tsumeb, in Namibia, in recognition of the Corporation's support for mineralogical investigations of the orebody at its Mineral Research Laboratory.

Guettardite is a rare arsenic-antimony lead sulfosalt mineral with the chemical formula Pb(Sb,As)2S4. It forms gray black metallic prismatic to acicular crystals with monoclinic symmetry. It is a dimorph of the triclinic twinnite.

<span class="mw-page-title-main">Fülöppite</span>

Fülöppite is a rare member of the plagionite group, comprising heteromorphite Pb7Sb8S19, plagionite Pb5Sb8S17 and semseyite Pb9Sb8S21. It was named in 1929 for Dr. Béla Fülöpp, (1863–1938), a Hungarian lawyer, statesman and mineral collector.

Scotlandite is a sulfite mineral first discovered in a mine at Leadhills in South Lanarkshire, Scotland, an area known to mineralogists and geologists for its wide range of different mineral species found in the veins that lie deep in the mine shafts. This specific mineral is found in the Susanna vein of Leadhills, where the crystals are formed as chisel-shaped or bladed. Scotlandite was actually the first naturally occurring sulfite, which has the ideal chemical formula of PbSO3. The mineral has been approved by the Commission on New Minerals and Mineral Names, IMA, to be named scotlandite for Scotland.

<span class="mw-page-title-main">Sartorite</span> Lead arsenic sulfide

Sartorite is a lead arsenic sulfide with the chemical formula PbAs2S4 and as type locality the Lengenbach Quarry in Legenbach, Binnental, Valais, Switzerland. Historically, sartorite has been thought isomorphic to chalcostibite, emplectite, and zinckenite, but was definitively distinguished from the others in 1939.

<span class="mw-page-title-main">Segnitite</span> Common iron oxide mineral

Segnitite is a lead iron(III) arsenate mineral. Segnitite was first found in the Broken Hill ore deposit in Broken Hill, New South Wales, Australia. In 1991, segnitite was approved as a new mineral. Segnitite has since been found worldwide near similar locality types where rocks are rich in zinc and lead especially. it was named for Australian mineralogist, gemologist and petrologist Edgar Ralph Segnit. The mineral was named after E. R. Segnit due to his contributions to Australian mineralogy.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 4 5 6 7 Berlepsch, P.B., Armbruster, T.A., Makovicky, E.M., Hejny, C.H., Topa, D.T., and Graeser, S.G. (2001) The Crystal Structure of (001) Twinned Xilingolite, Pb3Bi2S6, from Mittal-Hohtenn, Valais, Switzerland. Canadian Mineralogist, 39, 1653-1663.
  3. 1 2 Mindat.org
  4. 1 2 Handbook of Mineralogy