ZXDC

Last updated
ZXDC
Identifiers
Aliases ZXDC , ZXDL, ZXD family zinc finger C
External IDs OMIM: 615746 MGI: 1933108 HomoloGene: 82340 GeneCards: ZXDC
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001040653
NM_025112

NM_030260
NM_173002

RefSeq (protein)

NP_001035743
NP_079388

NP_084536
NP_766590

Location (UCSC) Chr 3: 126.44 – 126.48 Mb Chr 6: 90.35 – 90.38 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Zinc finger, X-linked, duplicated family member C (ZXDC) is a human CIITA-binding protein involved in the activation of major histocompatibility complex (MHC) class I and II. [5] For binding to occur, ZXDC must form an oligomeric complex with another copy of itself or with ZXDA, a related protein. [6] ZXDC is activated by sumoylation, a post-translational modification. [7] ZXDC plays a role in controlling immunological responses, cancer formation and progression, and cell proliferation, differentiation, and survival.

Contents

History

When Sakaue and colleagues searched for novel transcription factors involved in the development of Xenopus laevis, they discovered ZXDC (ZXD Family Zinc Finger C). This discovery was discovered in a research article that was published in 1998. They found a cDNA clone called "Xfin" that encodes a protein with two zinc finger C2H2 domains. [8]

Later research established the interspecies conservation of the Xfin protein, and the human equivalent was given the name ZXDC. It was discovered that the protein was broadly generated in human tissues and that a number of variables, including hypoxia, estrogen, and cytokines, controlled how the protein was expressed.

Structure

ZXDC is a protein composed of 455 amino acids in humans, with a molecular weight of approximately 49.9 kDa.

Near its C-terminus, the protein has two C2H2-type zinc finger domains that are likely to be involved in DNA binding and transcriptional control. A flexible linker region that separates the zinc fingers may provide more adaptability in binding to various DNA sequences.

Other domains found in ZXDC include a proline-rich region close to the N-terminus that may be important in protein-protein interactions and a central region that is projected to be intrinsically disordered. ZXDC also contains numerous other features in addition to the zinc fingers. Although the exact purpose of these domains is not yet known, they might assist in mediating interactions with other proteins or controlling the activity of the protein. [9]

ZXDC has mostly been investigated in the context of developmental biology and cell fate determination in animals. Studies in fruit flies, for instance, have demonstrated that protein is crucial for the development of particular cell types, such as the cell precursors of the sensory organs in the peripheral nervous system. [10]

Function

ZXDC is highly conserved between species, showing the significance of this gene for cellular function. ZXDC is a member of the zinc finger family of proteins that are crucial for the regulation of genes and cellular functions in a variety of organisms.

ZXDC (ZXD Family Zinc Finger C) is a protein-coding gene that controls biological processes such as cell division, proliferation, and apoptosis. This gene produces a protein with two C2H2-type zinc fingers that are a member of the ZXD family. [11]

Image of gsk3b. 1J1B.png
Image of gsk3β.

ZXDC has been linked to the formation of numerous cancer forms and it regulates the advancement of the cell cycle. It is also known to interact with other proteins, including GSK3β, a serine/threonine protein kinase implicated in a number of signaling pathways, and p53, an important tumor suppressor. [12]

By regulating the expression of genes linked to the innate immune response, ZXDC has also been demonstrated to contribute to the regulation of immunological responses. As a result, it is believed that ZXDC could be a possible target for the creation of new remedies for autoimmune and cancerous conditions. [13]

ZXDC is involved in controlling the circadian clock in cells, which regulates the daily cycles of physiological processes.[ citation needed ]

Isolation

ZXDC's solubility is not well described in the literature and may vary depending on a number of variables, including the protein's expression system, the buffering situation, and the presence of other proteins or chemicals. But studies have shown the effective separation of ZXDC using a variety of techniques, including gel filtration and affinity chromatography, suggesting that the protein is probably soluble in some circumstances. For instance, one study found superior amounts of soluble protein and pure recombinant ZXDC protein generated in Escherichia Coli using immobilized metal affinity chromatography (IMAC). [14]

Role in disease

Numerous cancers, including breast, lung, and colorectal cancer, have been linked to ZXDC, according to studies. It is also considered to be a possible therapeutic target for autoimmune and cancer conditions. ZXDC abnormality has been linked to cancer progression and an unfavorable prognosis.

In breast cancer, low ZXDC expression has been associated with tumor invasiveness, lymph node metastases, and poor prognosis. ZXDC suppresses the growth and migration of breast cancer cells, acting as a tumor suppressor.

The emergence of a more aggressive form of lung cancer has been correlated with decreased ZXDC expression. Studies have demonstrated that increasing ZXDC expression can prevent tumor development and invasion in lung cancer cells. [15]

In colorectal cancer, the loss of ZXDC expression has been connected to the advancement of the disease stage and lymph node metastasis. In addition, it has been proposed that ZXDC may function as a tumor suppressor by obstructing the Wnt/beta-catenin signaling pathway, which is frequently active in colorectal cancer.

Overall, these results indicate that ZXDC may be a key player in the initiation and development of cancer, and it may also hold interest as a diagnostic or therapeutic target for the treatment of cancer. To completely comprehend the processes underlying ZXDC's activity in cancer and to design specific treatments based on it, more study is necessary. [16]

Related Research Articles

<span class="mw-page-title-main">GLI1</span> Protein-coding gene in humans

Zinc finger protein GLI1 also known as glioma-associated oncogene is a protein that in humans is encoded by the GLI1 gene. It was originally isolated from human glioblastoma cells.

<span class="mw-page-title-main">Transcription factor Sp1</span> Protein-coding gene in the species Homo sapiens

Transcription factor Sp1, also known as specificity protein 1* is a protein that in humans is encoded by the SP1 gene.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 3</span> Protein-coding gene in humans

Mothers against decapentaplegic homolog 3 also known as SMAD family member 3 or SMAD3 is a protein that in humans is encoded by the SMAD3 gene.

<span class="mw-page-title-main">CIITA</span> Protein-coding gene in humans

CIITA is a human gene which encodes a protein called the class II, major histocompatibility complex, transactivator. Mutations in this gene are responsible for the bare lymphocyte syndrome in which the immune system is severely compromised and cannot effectively fight infection. Chromosomal rearrangement of CIITA is involved in the pathogenesis of Hodgkin lymphoma and primary mediastinal B cell lymphoma.

<span class="mw-page-title-main">Wilms tumor protein</span> Transcription factor gene involved in the urogenital system

Wilms tumor protein (WT33) is a protein that in humans is encoded by the WT1 gene on chromosome 11p.

<span class="mw-page-title-main">KLF6</span> Protein-coding gene in the species Homo sapiens

Krueppel-like factor 6 is a protein that in humans is encoded by the KLF6 gene.

<span class="mw-page-title-main">ZEB1</span> Protein-coding gene in the species Homo sapiens

Zinc finger E-box-binding homeobox 1 is a protein that in humans is encoded by the ZEB1 gene.

<span class="mw-page-title-main">PLAGL1</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein PLAGL1 is a protein that in humans is encoded by the PLAGL1 gene.

<span class="mw-page-title-main">DLC1</span> Protein-coding gene in the species Homo sapiens

Deleted in Liver Cancer 1 also known as DLC1 and StAR-related lipid transfer protein 12 (STARD12) is a protein which in humans is encoded by the DLC1 gene.

<span class="mw-page-title-main">ZHX1</span> Protein-coding gene in the species Homo sapiens

Zinc fingers and homeoboxes protein 1 is a protein that in humans is encoded by the ZHX1 gene.

<span class="mw-page-title-main">ARID2</span> Protein-coding gene in humans

AT-rich interactive domain-containing protein 2 (ARID2) is a protein that in humans is encoded by the ARID2 gene.

<span class="mw-page-title-main">JADE1</span> Protein-coding gene in the species Homo sapiens

JADE1 is a protein that in humans is encoded by the JADE1 gene.

<span class="mw-page-title-main">ZNF238</span> Protein-coding gene in humans

Zinc finger protein 238 is a zinc finger containing transcription factor that in humans is encoded by the ZNF238 gene.

<span class="mw-page-title-main">ZFX</span> Protein-coding gene in the species Homo sapiens

Zinc finger X-chromosomal protein is a protein that in mammals is encoded by the ZFX gene of the X chromosome.

<span class="mw-page-title-main">ZBTB32</span> Protein-coding gene in the species Homo sapiens

Zinc finger and BTB domain-containing protein 32 is a protein that in humans is encoded by the 1960 bp ZBTB32 gene. The 52 kDa protein is a transcriptional repressor and the gene is expressed in T and B cells upon activation, but also significantly in testis cells. It is a member of the Poxviruses and Zinc-finger (POZ) and Krüppel (POK) family of proteins, and was identified in multiple screens involving either immune cell tumorigenesis or immune cell development.

<span class="mw-page-title-main">ZNF366</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein 366, also known as DC-SCRIPT, is a protein that in humans is encoded by the ZNF366 gene. The ZNF366 gene was first identified in a DNA comparison study between 85 kb of Fugu rubripes sequence containing 17 genes with its homologous loci in the human draft genome.

<span class="mw-page-title-main">INSM1</span> Protein-coding gene in the species Homo sapiens

Insulinoma-associated protein 1 is a protein that in humans is encoded by the INSM1 gene.

<span class="mw-page-title-main">ZNF423</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein 423 is a protein that in humans is encoded by the ZNF423 gene.

<span class="mw-page-title-main">ZNF300</span> Human protein-coding gene

Zinc finger protein 300 is a protein that in humans is encoded by the ZNF300 gene. The protein encoded by this gene is a C2H2-type zinc finger DNA binding protein and a likely transcription factor.

<span class="mw-page-title-main">ZNF839</span> Protein which in humans is encoded by the ZNF839 gene

ZNF839 or zinc finger protein 839 is a protein which in humans is encoded by the ZNF839 gene. It is located on the long arm of chromosome 14. Zinc finger protein 839 is speculated to play a role in humoral immune response to cancer as a renal carcinoma antigen (NY-REN-50). This is because NY-REN-50 was found to be over expressed in cancer patients, especially those with renal carcinoma. Zinc finger protein 839 also plays a role in transcription regulation by metal-ion binding since it binds to DNA via C2H2-type zinc finger repeats.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000070476 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000034430 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Al-Kandari W, Jambunathan S, Navalgund V, Koneni R, Freer M, Parimi N, et al. (January 2007). "ZXDC, a novel zinc finger protein that binds CIITA and activates MHC gene transcription". Molecular Immunology. 44 (4): 311–321. doi:10.1016/j.molimm.2006.02.029. PMC   1624858 . PMID   16600381.
  6. Al-Kandari W, Koneni R, Navalgund V, Aleksandrova A, Jambunathan S, Fontes JD (June 2007). "The zinc finger proteins ZXDA and ZXDC form a complex that binds CIITA and regulates MHC II gene transcription". Journal of Molecular Biology. 369 (5): 1175–1187. doi:10.1016/j.jmb.2007.04.033. PMC   1963517 . PMID   17493635.
  7. Jambunathan S, Fontes JD (September 2007). "Sumoylation of the zinc finger protein ZXDC enhances the function of its transcriptional activation domain". Biological Chemistry. 388 (9): 965–972. doi:10.1515/BC.2007.106. PMID   17696781. S2CID   1007656.
  8. Wargent ET, Martin-Gronert MS, Cripps RL, Heisler LK, Yeo GS, Ozanne SE, et al. (September 2020). "Developmental programming of appetite and growth in male rats increases hypothalamic serotonin (5-HT)5A receptor expression and sensitivity" (PDF). International Journal of Obesity. 44 (9): 1946–1957. doi:10.1038/s41366-020-0643-2. PMID   32719434. S2CID   220810612.
  9. Al-Kandari W, Jambunathan S, Navalgund V, Koneni R, Freer M, Parimi N, et al. (January 2007). "ZXDC, a novel zinc finger protein that binds CIITA and activates MHC gene transcription". Molecular Immunology. 44 (4): 311–321. doi:10.1016/j.molimm.2006.02.029. PMC   1624858 . PMID   16600381.
  10. Seetharam A, Bai Y, Stuart GW (April 2010). "A survey of well conserved families of C2H2 zinc-finger genes in Daphnia". BMC Genomics. 11 (1): 276. doi: 10.1186/1471-2164-11-276 . PMC   2889900 . PMID   20433734.
  11. Ozturk S, Kosebent EG, Talibova G, Bilmez Y, Tire B, Can A (February 2023). "Embryonic poly(A)-binding protein interacts with translation-related proteins and undergoes phosphorylation on the serine, threonine, and tyrosine residues in the mouse oocytes and early embryos". Journal of Assisted Reproduction and Genetics. 40 (4): 929–941. doi:10.1007/s10815-023-02746-7. PMC   10224904 . PMID   36823316. S2CID   257153864.
  12. Bellanné-Chantelot C, Rabadan Moraes G, Schmaltz-Panneau B, Marty C, Vainchenker W, Plo I (July 2020). "Germline genetic factors in the pathogenesis of myeloproliferative neoplasms" (PDF). Blood Reviews. 42: 100710. doi: 10.1016/j.blre.2020.100710 . PMID   32532454. S2CID   219620040.
  13. Ollila H, Wennerstrom A, Partinen M, Mignot E, Saarela J, Saavalainen P, Vaarala O, Tienari P, Perola M (January 2019). "Genetics of vaccination-related narcolepsy". European Neuropsychopharmacology. 29: S994. bioRxiv   10.1101/169623 . doi:10.1016/j.euroneuro.2017.08.379. S2CID   90650123.
  14. Takenawa T, Kuramitsu Y, Wang Y, Okada F, Tokuda K, Kitagawa T, et al. (January 2013). "Proteomic analysis showed down-regulation of nucleophosmin in progressive tumor cells compared to regressive tumor cells". Anticancer Research. 33 (1): 153–160. PMID   23267140.
  15. Hu J, Chen Z, Bao L, Zhou L, Hou Y, Liu L, et al. (July 2020). "Single-Cell Transcriptome Analysis Reveals Intratumoral Heterogeneity in ccRCC, which Results in Different Clinical Outcomes". Molecular Therapy. 28 (7): 1658–1672. doi:10.1016/j.ymthe.2020.04.023. PMC   7335756 . PMID   32396851.
  16. O'Farrell HE, Bowman RV, Fong KM, Yang IA (May 2021). "Plasma Extracellular Vesicle miRNAs Can Identify Lung Cancer, Current Smoking Status, and Stable COPD". International Journal of Molecular Sciences. 22 (11): 5803. doi: 10.3390/ijms22115803 . PMC   8198071 . PMID   34071592.