Asoprisnil ecamate

Last updated
Asoprisnil ecamate
Asoprisnil ecamate.svg
Clinical data
Other namesJ-956; 11β-(4-((E)-(Ethylcarbamoyl-oxyimino)methyl)phenyl)-17β-methoxy-17α-(methoxymethyl)estra-4,9-dien-3-one
Identifiers
  • [(E)-[4-[(8S,11R,13S,14S,17S)-17-Methoxy-17-(methoxymethyl)-13-methyl-3-oxo-1,2,6,7,8,11,12,14,15,16-decahydrocyclopenta[a]phenanthren-11-yl]phenyl]methylideneamino] N-ethylcarbamate
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
Chemical and physical data
Formula C31H40N2O5
Molar mass 520.670 g·mol−1
3D model (JSmol)
  • CCNC(=O)O/N=C/C1=CC=C(C=C1)[C@H]2C[C@]3([C@@H](CC[C@]3(COC)OC)[C@H]4C2=C5CCC(=O)C=C5CC4)C
  • InChI=1S/C31H40N2O5/c1-5-32-29(35)38-33-18-20-6-8-21(9-7-20)26-17-30(2)27(14-15-31(30,37-4)19-36-3)25-12-10-22-16-23(34)11-13-24(22)28(25)26/h6-9,16,18,25-27H,5,10-15,17,19H2,1-4H3,(H,32,35)/b33-18+/t25-,26+,27-,30-,31+/m0/s1
  • Key:XMCOWVOJIVSMEO-RCCUTSCYSA-N

Asoprisnil ecamate (INN) (developmental code name J-956) is a synthetic, steroidal selective progesterone receptor modulator (SPRM) which was under development for the treatment of endometriosis, uterine fibroids, and menopausal symptoms but was discontinued. [1] [2] [3] It is a potent and highly selective ligand of the progesterone receptor with mixed agonistic and antagonistic activity and much reduced antiglucocorticoid activity relative to mifepristone. [2] [3] [4] The drug reached phase III clinical trials for the aforementioned indications prior to its discontinuation. [1]

Contents

See also

Related Research Articles

<span class="mw-page-title-main">Progesterone receptor</span> Cytoplasmic receptor protein found inside cells

The progesterone receptor (PR), also known as NR3C3 or nuclear receptor subfamily 3, group C, member 3, is a protein found inside cells. It is activated by the steroid hormone progesterone.

Neurosteroids, also known as neuroactive steroids, are endogenous or exogenous steroids that rapidly alter neuronal excitability through interaction with ligand-gated ion channels and other cell surface receptors. The term neurosteroid was coined by the French physiologist Étienne-Émile Baulieu and refers to steroids synthesized in the brain. The term, neuroactive steroid refers to steroids that can be synthesized in the brain, or are synthesized by an endocrine gland, that then reach the brain through the bloodstream and have effects on brain function. The term neuroactive steroids was first coined in 1992 by Steven Paul and Robert Purdy. In addition to their actions on neuronal membrane receptors, some of these steroids may also exert effects on gene expression via nuclear steroid hormone receptors. Neurosteroids have a wide range of potential clinical applications from sedation to treatment of epilepsy and traumatic brain injury. Ganaxolone, a synthetic analog of the endogenous neurosteroid allopregnanolone, is under investigation for the treatment of epilepsy.

<span class="mw-page-title-main">Selective progesterone receptor modulator</span>

A selective progesterone receptor modulator (SPRM) is an agent that acts on the progesterone receptor (PR), the biological target of progestogens like progesterone. A characteristic that distinguishes such substances from full receptor agonists and full antagonists is that their action differs in different tissues, i.e. agonist in some tissues while antagonist in others. This mixed profile of action leads to stimulation or inhibition in tissue-specific manner, which further raises the possibility of dissociating undesirable adverse effects from the development of synthetic PR-modulator drug candidates.

<span class="mw-page-title-main">Asoprisnil</span> Chemical compound

Asoprisnil is a synthetic, steroidal selective progesterone receptor modulator that was under development by Schering and TAP Pharmaceutical Products for the treatment of uterine fibroids. In 2005, phase III clinical trials were discontinued due to endometrial changes in patients.

<span class="mw-page-title-main">Telapristone</span> Chemical compound

Telapristone, as telapristone acetate, is a synthetic, steroidal selective progesterone receptor modulator (SPRM) related to mifepristone which is under development by Repros Therapeutics for the treatment of breast cancer, endometriosis, and uterine fibroids. It was originally developed by the National Institutes of Health (NIH), and, as of 2017, is in phase II clinical trials for the aforementioned indications. In addition to its activity as an SPRM, the drug also has some antiglucocorticoid activity.

<span class="mw-page-title-main">Dienogest</span> Chemical compound

Dienogest, sold under the brand name Visanne among others, is a progestin medication which is used in birth control pills and in the treatment of endometriosis. It is also used in menopausal hormone therapy and to treat heavy periods. Dienogest is available both alone and in combination with estrogens. It is taken by mouth.

<span class="mw-page-title-main">Trimegestone</span> Chemical compound

Trimegestone, sold under the brand names Ondeva and Totelle among others, is a progestin medication which is used in menopausal hormone therapy and in the prevention of postmenopausal osteoporosis. It was also under development for use in birth control pills to prevent pregnancy, but ultimately was not marketed for this purpose. The medication is available alone or in combination with an estrogen. It is taken by mouth.

<span class="mw-page-title-main">Isopregnanolone</span> Chemical compound

Isopregnanolone, also known as isoallopregnanolone and epiallopregnanolone, as well as sepranolone, and as 3β-hydroxy-5α-pregnan-20-one or 3β,5α-tetrahydroprogesterone (3β,5α-THP), is an endogenous neurosteroid and a natural 3β-epimer of allopregnanolone. It has been reported to act as a subunit-selective negative allosteric modulator of the GABAA receptor, and antagonizes in animals and humans some but not all of the GABAA receptor-mediated effects of allopregnanolone, such as anesthesia, sedation, and reduced saccadic eye movements, but not learning impairment. Isopregnanolone has no hormonal effects and appears to have no effect on the GABAA receptor by itself; it selectively antagonizes allopregnanolone and does not affect the effects of other types of GABAA receptor positive allosteric modulators such as benzodiazepines or barbiturates.

<span class="mw-page-title-main">Brilanestrant</span> Discontinued oral cancer remedy

Brilanestrant (INN) is a nonsteroidal combined selective estrogen receptor modulator (SERM) and selective estrogen receptor degrader (SERD) that was discovered by Aragon Pharmaceuticals and was under development by Genentech for the treatment of locally advanced or metastatic estrogen receptor (ER)-positive breast cancer.

<span class="mw-page-title-main">MK-0773</span> Chemical compound

MK-0773, also known as PF-05314882, is a steroidal, orally active selective androgen receptor modulator (SARM) that was under development by Merck and GTx for the treatment of sarcopenia in women and men. Clinical trials for sarcopenia began in late 2007 but the collaboration between Merck and GTx ended in early 2010 and GTx terminated development of MK-0773 shortly thereafter.

<span class="mw-page-title-main">Onapristone</span> Chemical compound

Onapristone is a synthetic and steroidal antiprogestogen with additional antiglucocorticoid activity which was developed by Schering and described in 1984 but was never marketed. It is a silent antagonist of the progesterone receptor (PR), in contrast to the related antiprogestogen mifepristone. Moreover, compared to mifepristone, onapristone has reduced antiglucocorticoid activity, shows little antiandrogenic activity, and has 10- to 30-fold greater potency as an antiprogestogen. The medication was under development for clinical use, for instance in the treatment of breast cancer and as an endometrial contraceptive, but was discontinued during phase III clinical trials in 1995 due to findings that liver function abnormalities developed in a majority patients.

<span class="mw-page-title-main">Vilaprisan</span> Chemical compound

Vilaprisan is a synthetic and steroidal selective progesterone receptor modulator (SPRM) which is under development by Bayer HealthCare Pharmaceuticals for the treatment of endometriosis and uterine fibroids. It is a potent and highly selective partial agonist of the progesterone receptor (PR). As of 2017, the drug is in phase II clinical trials for the aforementioned indications.

<span class="mw-page-title-main">Lonaprisan</span> Chemical compound

Lonaprisan is a synthetic, steroidal antiprogestogen which was under development by Bayer HealthCare Pharmaceuticals for the treatment of endometriosis, dysmenorrhea, and breast cancer but was discontinued. It is a potent and highly selective silent antagonist of the progesterone receptor (PR). The drug reached phase II clinical trials prior to its discontinuation.

<span class="mw-page-title-main">Estradiol sulfamate</span> Steroid sulfatase inhibitor under development

Estradiol sulfamate, or estradiol-3-O-sulfamate, is a steroid sulfatase (STS) inhibitor which is under development for the treatment of endometriosis. It is the C3 sulfamate ester of estradiol, and was originally thought to be a prodrug of estradiol. The drug was first synthesized as an STS inhibitor along with its oxidized version estrone 3-O-sulfamate (EMATE) in the group of Professor Barry V L Potter at the University of Bath, UK, working together with Professor Michael J Reed at Imperial College, London and was found to be highly estrogenic in rodents. Such aryl sulfamate esters were shown to be "first-in-class" highly potent active site-directed irreversible STS inhibitors. Compounds of this class are thought to irreversibly modify the active site formylglycine residue of STS. The drug shows profoundly reduced susceptibility to first-pass metabolism relative to estradiol, and was believed to be the first "potent" estradiol prodrug to be discovered. It was clinically investigated for possible use as an estrogen for indications like hormonal contraception and menopausal hormone therapy. However, it showed no estrogenic effects in women. The potent non-estrogenic clinical STS inhibitor Irosustat (STX64/667-Coumate) was used to explore the possibility that STS might be responsible for the hydrolysis of estrogen sulphamates. Results demonstrated convincingly that STS is the enzyme responsible for the removal of the sulfamoyl group from estrogen sulfamates and has a crucial role in regulating the estrogenicity associated with this class of drug. Thus, STS inhibition blocks the conversion of E2MATE into estradiol and thereby abolishes its estrogenicity in humans. Irosustat has completed a number of clinical trials in oncology as an STS inhibitor currently up to Phase II.

<span class="mw-page-title-main">Estrone sulfamate</span> Chemical compound

Estrone sulfamate, or estrone-3-O-sulfamate, is a steroid sulfatase (STS) inhibitor which has not yet been marketed. It is the C3 sulfamate ester of the estrogen estrone. Unlike other estrogen esters however, EMATE is not an effective prodrug of estrogens. A closely related compound is estradiol sulfamate (E2MATE), which is extensively metabolized into EMATE and has similar properties to it.

<span class="mw-page-title-main">Ozarelix</span> Chemical compound

Ozarelix is a peptide gonadotropin-releasing hormone antagonist which is or was under development by AEterna Zentaris Inc. and Spectrum Pharmaceuticals as a long-acting injection formulation for the treatment of prostate cancer. It has also been investigated for the treatment of endometriosis, but no development has been reported. The drug was previously under investigation for the treatment of benign prostatic hyperplasia and Alzheimer's disease as well, but development for these indications was discontinued. As of June 2015, it was in phase II clinical trials for prostate cancer. It seems to no longer be under development.

<span class="mw-page-title-main">EM-5854</span> Chemical compound

EM-5854 is a steroidal antiandrogen which was under development by Endoceutics, Inc. for the treatment of prostate cancer. It was first described in a patent in 2008, and was further characterized in 2012. EM-5854 reached phase I/II clinical trials for the treatment of prostate cancer but development was discontinued in March 2019.

<span class="mw-page-title-main">WAY-204688</span> Chemical compound

WAY-204688, also known as SIM-688, is a synthetic nonsteroidal estrogen and nuclear factor κB (NF-κB) inhibitor which was originated by ArQule and Wyeth and was under development by Wyeth for the treatment of rheumatoid arthritis, non-specific inflammation, and sepsis but was never marketed. It is a "pathway-selective" estrogen receptor (ER) ligand which inhibits NF-κB with an IC50Tooltip half-maximal inhibitory concentration of 122 nM and with maximal inhibition relative to estradiol of 94%. Inhibition of NF-κB by WAY-204688 appears to be dependent on agonism of the ERα, as it is reversed by the ERα antagonist fulvestrant, but is not dependent on the ERβ. In contrast to the case of NF-κB inhibition, WAY-204688 produces only slight elevation of creatine kinase in vitro, a measure of classical estradiol effects. It reached phase I clinical trials prior to the discontinuation of its development.

A benign gynecological condition is a non-cancerous (benign) issue affecting the female reproductive system, including common conditions such as uterine fibroids and endometriosis.

References

  1. 1 2 "Asoprisnil - AdisInsight".
  2. 1 2 Schubert G, Elger W, Kaufmann G, Schneider B, Reddersen G, Chwalisz K (2005). "Discovery, chemistry, and reproductive pharmacology of asoprisnil and related 11beta-benzaldoxime substituted selective progesterone receptor modulators (SPRMs)". Seminars in Reproductive Medicine. 23 (1): 58–73. doi:10.1055/s-2005-864034. PMID   15714390. S2CID   260316786.
  3. 1 2 Chwalisz K, Perez MC, Demanno D, Winkel C, Schubert G, Elger W (2005). "Selective progesterone receptor modulator development and use in the treatment of leiomyomata and endometriosis". Endocrine Reviews. 26 (3): 423–38. doi: 10.1210/er.2005-0001 . PMID   15857972.
  4. Chwalisz K, Garg R, Brenner R, Slayden O, Winkel C, Elger W (2006). "Role of nonhuman primate models in the discovery and clinical development of selective progesterone receptor modulators (SPRMs)". Reproductive Biology and Endocrinology. 4 (Suppl 1): S8. doi: 10.1186/1477-7827-4-S1-S8 . PMC   1775068 . PMID   17118172.