Bietti's crystalline dystrophy

Last updated
Bietti's Crystalline Dystrophy
Other namesBietti crystalline corneoretinal dystrophy [1]
Autorecessive.svg
Bietti's crystalline dystrophy has an autosomal recessive pattern of inheritance.

Bietti's crystalline dystrophy (BCD) is a rare autosomal recessive [2] eye disease named after G. B. Bietti. [3]

Contents

BCD is a rare disease and appears to be more common in people with Asian ancestry. [4] [5] [6]

Presentation

Symptoms of BCD include:

Genetics

BCD is inherited in an autosomal recessive manner. [2] This means the defective gene responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.

BCD is associated with mutations in the CYP4V2 gene. [2] The nematode C. elegans has a duplicated gene (cyp31A2 and cyp31A3) that are orthologous of the human gene. These genes code for cytochrome P450s involved in fatty acid synthesis. [7]

Diagnosis

Treatment

At this time, there is no treatment for BCD. Genetic studies are being conducted to find treatments for patients with BCD. [8]

Related Research Articles

Genetic disorder Health problem caused by one or more abnormalities in the genome

A genetic disorder is a health problem caused by one or more abnormalities in the genome. It can be caused by a mutation in a single gene (monogenic) or multiple genes (polygenic) or by a chromosomal abnormality. Although polygenic disorders are the most common, the term is mostly used when discussing disorders with a single genetic cause, either in a gene or chromosome. The mutation responsible can occur spontaneously before embryonic development, or it can be inherited from two parents who are carriers of a faulty gene or from a parent with the disorder. When the genetic disorder is inherited from one or both parents, it is also classified as a hereditary disease. Some disorders are caused by a mutation on the X chromosome and have X-linked inheritance. Very few disorders are inherited on the Y chromosome or mitochondrial DNA.

Retinitis pigmentosa Gradual retinal degeneration leading to progressive sight loss

Retinitis pigmentosa (RP) is a genetic disorder of the eyes that causes loss of vision. Symptoms include trouble seeing at night and decreasing peripheral vision. As peripheral vision worsens, people may experience "tunnel vision". Complete blindness is uncommon. Onset of symptoms is generally gradual and often begins in childhood.

Oculopharyngeal muscular dystrophy Medical condition

Oculopharyngeal muscular dystrophy (OPMD) is a rare form of muscular dystrophy with symptoms generally starting when an individual is 40 to 50 years old. It can be autosomal dominant neuromuscular disease or autosomal recessive. The most common inheritance of OPMD is autosomal dominant, which means only one copy of the mutated gene needs to be present in each cell. Children of an affected parent have a 50% chance of inheriting the mutant gene.

Fukuyama congenital muscular dystrophy Medical condition

Fukuyama congenital muscular dystrophy (FCMD) is a rare, autosomal recessive form of muscular dystrophy mainly described in Japan but also identified in Turkish and Ashkenazi Jewish patients; fifteen cases were first described on 1960 by Dr. Yukio Fukuyama.

Mulibrey nanism Medical condition

Mulibrey nanism is a rare autosomal recessive congenital disorder. It causes severe growth failure along with abnormalities of the heart, muscle, liver, brain and eye. TRIM37 is responsible for various cellular functions including developmental patterning.

Hyperlysinemia Medical condition

Hyperlysinemia is an autosomal recessive metabolic disorder characterized by an abnormal increase of lysine in the blood, but appears to be benign. It is caused by mutations in AASS, which encodes α-aminoadipic semialdehyde synthase.

Hermansky–Pudlak syndrome Medical condition

Heřmanský–Pudlák syndrome is an extremely rare autosomal recessive disorder which results in oculocutaneous albinism, bleeding problems due to a platelet abnormality, and storage of an abnormal fat-protein compound. It is considered to affect around 1 in 500,000 people worldwide, with a significantly higher occurrence in Puerto Ricans, with a prevalence of 1 in 1800. Many of the clinical research studies on the disease have been conducted in Puerto Rico.

Adenine phosphoribosyltransferase deficiency Medical condition

Adenine phosphoribosyltransferase deficiency is an autosomal recessive metabolic disorder associated with a mutation in the enzyme adenine phosphoribosyltransferase.

Autosomal recessive multiple epiphyseal dysplasia Medical condition

Autosomal recessive multiple epiphyseal dysplasia (ARMED), also called epiphyseal dysplasia, multiple, 4 (EDM4), multiple epiphyseal dysplasia with clubfoot or –with bilayered patellae, is an autosomal recessive congenital disorder affecting cartilage and bone development. The disorder has relatively mild signs and symptoms, including joint pain, scoliosis, and malformations of the hands, feet, and knees.

Vitelliform macular dystrophy Medical condition

Vitelliform macular dystrophy is an irregular autosomal dominant eye disorder which can cause progressive vision loss. This disorder affects the retina, specifically cells in a small area near the center of the retina called the macula. The macula is responsible for sharp central vision, which is needed for detailed tasks such as reading, driving, and recognizing faces. The condition is characterized by yellow, slightly elevated, round structures similar to the yolk of an egg.

Congenital muscular dystrophy Medical condition

Congenital muscular dystrophies are autosomal recessively-inherited muscle diseases. They are a group of heterogeneous disorders characterized by muscle weakness which is present at birth and the different changes on muscle biopsy that ranges from myopathic to overtly dystrophic due to the age at which the biopsy takes place.

Stargardt disease is the most common inherited single-gene retinal disease. In terms of the first description of the disease, it follows an autosomal recessive inheritance pattern, which has been later linked to bi-allelic ABCA4 gene variants (STGD1). However, there are Stargardt-like diseases with mimicking phenotypes that are referred to as STGD3 and STGD4, and have a autosomal dominant inheritance due to defects with ELOVL4 or PROM1 genes, respectively. It is characterized by macular degeneration that begins in childhood, adolescence or adulthood, resulting in progressive loss of vision.

Cerebrotendineous xanthomatosis Medical condition

Cerebrotendinous xanthomatosis, also called cerebral cholesterosis, is an autosomal recessive form of xanthomatosis. It falls within a group of genetic disorders called the leukodystrophies.

Sarcosinemia Medical condition

Sarcosinemia (SAR), also called hypersarcosinemia and SARDH deficiency, is a rare autosomal recessive metabolic disorder characterized by an increased concentration of sarcosine in blood plasma and urine ("sarcosinuria"). It can result from an inborn error of sarcosine metabolism, or from severe folate deficiency related to the folate requirement for the conversion of sarcosine to glycine. It is thought to be a relatively benign condition.

CYP4V2

Cytochrome P450 4V2 is a protein that in humans is encoded by the CYP4V2 gene.

Antley–Bixler syndrome Medical condition

Antley–Bixler syndrome is a rare, very severe autosomal recessive congenital disorder characterized by malformations and deformities affecting the majority of the skeleton and other areas of the body.

EEM syndrome Medical condition

EEM syndrome is an autosomal recessive congenital malformation disorder affecting tissues associated with the ectoderm, and also the hands, feet and eyes.

Congenital ichthyosiform erythroderma (CIE), also known as nonbullous congenital ichthyosiform erythroderma, is a rare type of the ichthyosis family of skin diseases which occurs in 1 in 200,000 to 300,000 births. CIE comes under the umbrella term autosomal recessive congenital ichthyosis (ARCI), which include non-syndromic congenital ichthyoses such as harlequin ichthyosis and lamellar ichthyosis.

Congenital stromal corneal dystrophy Medical condition

Congenital stromal corneal dystrophy (CSCD) is an extremely rare, autosomal dominant form of corneal dystrophy. Only 4 families have been reported to have the disease by 2009. The main features of the disease are numerous opaque flaky or feathery areas of clouding in the stroma that multiply with age and eventually preclude visibility of the endothelium. Strabismus or primary open angle glaucoma was noted in some of the patients. Thickness of the cornea stays the same, Descemet's membrane and endothelium are relatively unaffected, but the fibrils of collagen that constitute stromal lamellae are reduced in diameter and lamellae themselves are packed significantly more tightly.

Aminolevulinic acid dehydratase deficiency porphyria Medical condition

Aminolevulinic acid dehydratase deficiency porphyria is a rare autosomal recessive metabolic disorder that results from inappropriately low levels of the enzyme delta-aminolevulinic acid dehydratase (ALAD), which is required for normal heme synthesis. This deficiency results in the accumulation of a toxic metabolic precursor in the heme synthesis pathway called aminolevulinic acid (ALA). Lead poisoning can also disrupt ALAD and result in elevated ALA causing the same symptoms. Heme is a component of hemoglobin which carries oxygen in red blood cells.

References

  1. Online Mendelian Inheritance in Man (OMIM): 210370
  2. 1 2 3 Li A, Jiao X, Munier FL, Schorderet DF, Yao W, Iwata F, Hayakawa M, Kanai A, Shy Chen M, Alan Lewis R, Heckenlively J, Weleber RG, Traboulsi EI, Zhang Q, Xiao X, Kaiser-Kupfer M, Sergeev YV, Hejtmancik JF (2004). "Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2". Am. J. Hum. Genet. 74 (5): 817–26. doi:10.1086/383228. PMC   1181977 . PMID   15042513.
  3. Bietti G (1937). "Ueber familiaeres Vorkommen von 'Retinitis punctata albescens' (verbunden mit 'Dystrophia marginalis cristallinea corneae'), Glitzern des Glaskoerpers und anderen degenerativen Augenveraenderungen". Klinische Monatsblätter für Augenheilkunde . 99: 737–757.
  4. Furusato E, Cameron JD, Chan CC (2010). "Evolution of Cellular Inclusions in Bietti's Crystalline Dystrophy". Ophthalmol Eye Dis. 2010 (2): 9–15. doi:10.4137/OED.S2821. PMC   3045089 . PMID   21359135.
  5. Sahu, DK; Rawoof, AB (2002). "Bietti's crystalline dystrophy". Indian J Ophthalmol. Medknow. 50 (4): 330–332. PMID   12532504.
  6. Welch, RB (1977). "Bietti's tapetoretinal degeneration with marginal corneal dystrophy crystalline retinopathy". Trans Am Ophthalmol Soc. 75: 164–79. PMC   1311548 . PMID   306693.
  7. Benenati G, Penkov S, Müller-Reichert T, Entchev EV, Kurzchalia TV (May–Jun 2009). "Two cytochrome P450s in Caenorhabditis elegans are essential for the organization of eggshell, correct execution of meiosis and the polarization of embryo". Mech Dev. 126 (5–6): 382–93. doi: 10.1016/j.mod.2009.02.001 . PMID   19368796. S2CID   17220562.
  8. "Facts About Bietti's Crystalline Dystrophy | National Eye Institute". nei.nih.gov. Retrieved 18 October 2018.