Copper(II) chloride

Last updated

Contents

Copper(II) chloride
Tolbachite-3D-balls.png
Anhydrous
   Copper, Cu
   Chlorine, Cl
Copper(II) chloride.jpg
Anhydrous
Cupric chloride.jpg
Dihydrate
Names
IUPAC name
Copper(II) chloride
Other names
Cupric chloride
Identifiers
3D model (JSmol)
8128168
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.028.373 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 231-210-2
9300
PubChem CID
RTECS number
  • GL7000000
UNII
UN number 2802
  • InChI=1S/2ClH.Cu/h2*1H;/q;;+2/p-2 Yes check.svgY
    Key: ORTQZVOHEJQUHG-UHFFFAOYSA-L Yes check.svgY
  • InChI=1/2ClH.Cu/h2*1H;/q;;+2/p-2/rCl2Cu/c1-3-2
    Key: ORTQZVOHEJQUHG-LRIOHBSEAE
  • InChI=1/2ClH.Cu/h2*1H;/q;;+2/p-2
    Key: ORTQZVOHEJQUHG-NUQVWONBAE
  • Cl[Cu]Cl
  • [Cu+2].[Cl-].[Cl-]
Properties
CuCl2
Molar mass 134.45 g/mol (anhydrous)
170.48 g/mol (dihydrate)
Appearanceyellow-brown solid (anhydrous)
blue-green solid (dihydrate)
Odor odorless
Density 3.386 g/cm3 (anhydrous)
2.51 g/cm3 (dihydrate)
Melting point 630 °C (1,166 °F; 903 K) (extrapolated)
100 °C (dehydration of dihydrate)
Boiling point 993 °C (1,819 °F; 1,266 K) (anhydrous, decomposes)
70.6 g/(100 mL) (0 °C)
75.7 g/(100 mL) (25 °C)
107.9 g/(100 mL) (100 °C)
Solubility methanol:
68 g/(100 mL) (15 °C)


ethanol:
53 g/(100 mL) (15 °C)
soluble in acetone

+1080·10−6 cm3/mol
Structure [1] [2]
monoclinic (β = 121°) (anhydrous)
orthorhombic (dihydrate)
C2/m (anhydrous)
Pbmn (dihydrate)
a = 6.85 Å (anhydrous)
7.41 Å (dihydrate), b = 3.30 Å (anhydrous)
8.09 Å (dihydrate), c = 6.70 Å (anhydrous)
3.75 Å (dihydrate)
Octahedral
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-skull.svg GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg
Danger
H301, H302, H312, H315, H318, H319, H335, H410, H411
P261, P264, P270, P271, P273, P280, P301+P310, P301+P312, P302+P352, P304+P340, P305+P351+P338, P310, P312, P321, P322, P330, P332+P313, P337+P313, P362, P363, P391, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
2
0
1
Flash point Non-flammable
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 1 mg/m3 (as Cu) [3]
REL (Recommended)
TWA 1 mg/m3 (as Cu) [3]
IDLH (Immediate danger)
TWA 100 mg/m3 (as Cu) [3]
Safety data sheet (SDS) Fisher Scientific
Related compounds
Other anions
Copper(II) fluoride
Copper(II) bromide
Other cations
Copper(I) chloride
Silver chloride
Gold(III) chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Copper(II) chloride, also known as cupric chloride, is an inorganic compound with the chemical formula Cu Cl 2. The monoclinic yellowish-brown anhydrous form slowly absorbs moisture to form the orthorhombic blue-green dihydrate CuCl2·2H2O, with two water molecules of hydration. It is industrially produced for use as a co-catalyst in the Wacker process.

Both the anhydrous and the dihydrate forms occur naturally as the rare minerals tolbachite and eriochalcite, respectively.

Structure

Structure of copper(II) chloride dihydrate
Copper, Cu
Oxygen, O
Chlorine, Cl
Hydrogen, H Copper(II)-chloride-dihydrate-xtal-3D-balls.png
Structure of copper(II) chloride dihydrate
   Copper, Cu
   Oxygen, O
   Chlorine, Cl
   Hydrogen, H

Anhydrous copper(II) chloride adopts a distorted cadmium iodide structure. In this structure, the copper centers are octahedral. Most copper(II) compounds exhibit distortions from idealized octahedral geometry due to the Jahn-Teller effect, which in this case describes the localization of one d-electron into a molecular orbital that is strongly antibonding with respect to a pair of chloride ligands. In CuCl2·2H2O, the copper again adopts a highly distorted octahedral geometry, the Cu(II) centers being surrounded by two water ligands and four chloride ligands, which bridge asymmetrically to other Cu centers. [4] [5]

Copper(II) chloride is paramagnetic. Of historical interest, CuCl2·2H2O was used in the first electron paramagnetic resonance measurements by Yevgeny Zavoisky in 1944. [6] [7]

Properties and reactions

Aqueous solutions of copper(II) chloride. Greenish when high in
Cl, more blue when lower in
Cl. CuCl2 equilibrium.JPG
Aqueous solutions of copper(II) chloride. Greenish when high in Cl, more blue when lower in Cl.

Aqueous solutions prepared from copper(II) chloride contain a range of copper(II) complexes depending on concentration, temperature, and the presence of additional chloride ions. These species include the blue color of [Cu(H2O)6]2+ and the yellow or red color of the halide complexes of the formula [CuCl2+x]x. [5]

Hydrolysis

When copper(II) chloride solutions are treated with a base, a precipitation of copper(II) hydroxide occurs: [8]

CuCl2 + 2 NaOH → Cu(OH)2 + 2 NaCl

Partial hydrolysis gives dicopper chloride trihydroxide, Cu2(OH)3Cl, a popular fungicide. [8] When an aqueous solution of copper(II) chloride is left in the air and isn't stabilized by a small amount of acid, it is prone to undergo slight hydrolysis. [5]

Redox and decomposition

Copper(II) chloride is a mild oxidant. It starts to decompose to copper(I) chloride and chlorine gas around 400 °C (752 °F) and is completely decomposed near 1,000 °C (1,830 °F): [8] [9] [10] [11]

2 CuCl2 → 2 CuCl + Cl2

The reported melting point of copper(II) chloride of 498 °C (928 °F) is a melt of a mixture of copper(I) chloride and copper(II) chloride. The true melting point of 630 °C (1,166 °F) can be extrapolated by using the melting points of the mixtures of CuCl and CuCl2. [12] [13] Copper(II) chloride reacts with several metals to produce copper metal or copper(I) chloride (CuCl) with oxidation of the other metal. To convert copper(II) chloride to copper(I) chloride, it can be convenient to reduce an aqueous solution with sulfur dioxide as the reductant: [8]

2 CuCl2 + SO2 + 2 H2O → 2 CuCl + 2 HCl + H2SO4

Coordination complexes

CuCl2 reacts with HCl or other chloride sources to form complex ions: the red [CuCl3] (found in potassium trichloridocuprate(II) K[CuCl3]) (it is a dimer in reality, [Cu2Cl6]2−, a couple of tetrahedrons that share an edge), and the green or yellow [CuCl4]2− (found in potassium tetrachloridocuprate(II) K2[CuCl4]). [5] [14] [15]

CuCl2 + Cl[CuCl3]
CuCl2 + 2 Cl[CuCl4]2−

Some of these complexes can be crystallized from aqueous solution, and they adopt a wide variety of structures. [14]

Copper(II) chloride also forms a variety of coordination complexes with ligands such as ammonia, pyridine and triphenylphosphine oxide: [8] [5] [16]

CuCl2 + 2 C5H5N → [CuCl2(C5H5N)2] (tetragonal)
CuCl2 + 2 (C6H5)3P=O → [CuCl2((C6H5)3P=O)2] (tetrahedral)

However "soft" ligands such as phosphines (e.g., triphenylphosphine), iodide, and cyanide as well as some tertiary amines induce reduction to give copper(I) complexes. [5]

Preparation

Copper(II) chloride is prepared commercially by the action of chlorination of copper. Copper at red heat (300-400°C) combines directly with chlorine gas, giving (molten) copper(II) chloride. The reaction is very exothermic. [8] [15]

Cu(s) + Cl2(g) → CuCl2(l)

A solution of copper(II) chloride is commercially produced by adding chlorine gas to a circulating mixture of hydrochloric acid and copper. From this solution, the dihydrate can be produced by evaporation. [8] [10]

Although copper metal itself cannot be oxidized by hydrochloric acid, copper-containing bases such as the hydroxide, oxide, or copper(II) carbonate can react to form CuCl2 in an acid-base reaction which can subsequently be heated above 100 °C (212 °F) to produce the anhydrous derivative. [8] [10]

Once prepared, a solution of CuCl2 may be purified by crystallization. A standard method takes the solution mixed in hot dilute hydrochloric acid, and causes the crystals to form by cooling in a calcium chloride (CaCl2) ice bath. [17] [18]

There are indirect and rarely used means of using copper ions in solution to form copper(II) chloride. Electrolysis of aqueous sodium chloride with copper electrodes produces (among other things) a blue-green foam that can be collected and converted to the hydrate. While this is not usually done due to the emission of toxic chlorine gas, and the prevalence of the more general chloralkali process, the electrolysis will convert the copper metal to copper ions in solution forming the compound. Indeed, any solution of copper ions can be mixed with hydrochloric acid and made into a copper chloride by removing any other ions. [19]

Uses

Co-catalyst in Wacker process

A major industrial application for copper(II) chloride is as a co-catalyst with palladium(II) chloride in the Wacker process. In this process, ethene (ethylene) is converted to ethanal (acetaldehyde) using water and air. During the reaction, PdCl2 is reduced to Pd, and the CuCl2 serves to re-oxidize this back to PdCl2. Air can then oxidize the resultant CuCl back to CuCl2, completing the cycle. [20]

  1. C2H4 + PdCl2 + H2O → CH3CHO + Pd + 2 HCl
  2. Pd + 2 CuCl2 → 2 CuCl + PdCl2
  3. 4 CuCl + 4 HCl + O2 → 4 CuCl2 + 2 H2O

The overall process is: [20]

2 C2H4 + O2 → 2 CH3CHO

In organic synthesis

Copper(II) chloride has some highly specialized applications in the synthesis of organic compounds. [17] It affects the chlorination of aromatic hydrocarbons this is often performed in the presence of aluminium oxide. It is able to chlorinate the alpha position of carbonyl compounds: [20] [21]

CuCl2 alpha chlorination.png

This reaction is performed in a polar solvent such as dimethylformamide, often in the presence of lithium chloride, which accelerates the reaction. [20]

CuCl2, in the presence of oxygen, can also oxidize phenols. The major product can be directed to give either a quinone or a coupled product from oxidative dimerization. The latter process provides a high-yield route to 1,1-binaphthol: [22]

CuCl2 naphthol coupling.png

Such compounds are intermediates in the synthesis of BINAP and its derivatives. [20]

Copper(II) chloride dihydrate promotes the hydrolysis of acetonides, i.e., for deprotection to regenerate diols [23] or aminoalcohols, as in this example (where TBDPS = tert-butyldiphenylsilyl): [24]

CuCl2 DeprotectionOfAminoAlcohol.png

CuCl2 also catalyses the free radical addition of sulfonyl chlorides to alkenes; the alpha-chlorosulfone may then undergo elimination with a base to give a vinyl sulfone product. [20]

Catalyst in production of chlorine

Copper(II) chloride is used as a catalyst in a variety of processes that produce chlorine by oxychlorination. The Deacon process takes place at about 400 to 450 °C in the presence of a copper chloride: [8]

4 HCl + O2 → 2 Cl2 + 2 H2O

Copper(II) chloride catalyzes the chlorination in the production of vinyl chloride and dichloromethane. [8]

Copper(II) chloride is used in the copper–chlorine cycle where it reacts with steam into copper(II) oxide dichloride and hydrogen chloride and is later recovered in the cycle from the electrolysis of copper(I) chloride. [11]

Niche uses

Copper(II) chloride is used in pyrotechnics as a blue/green coloring agent. In a flame test, copper chlorides, like all copper compounds, emit green-blue light. [25]

In humidity indicator cards (HICs), cobalt-free brown to azure (copper(II) chloride base) HICs can be found on the market. [26] In 1998, the European Community classified items containing cobalt(II) chloride of 0.01 to 1% w/w as T (Toxic), with the corresponding R phrase of R49 (may cause cancer if inhaled). Consequently, new cobalt-free humidity indicator cards containing copper have been developed. [27]

Copper(II) chloride is used as a mordant in the textile industry, petroleum sweetener, wood preservative, and water cleaner. [8] [28]

Natural occurrence

Eriochalcite Eriochalcite-88986.jpg
Eriochalcite

Copper(II) chloride occurs naturally as the very rare anhydrous mineral tolbachite and the dihydrate eriochalcite. [29] Both are found near fumaroles and in some copper mines. [30] [31] [32] Mixed oxyhydroxide-chlorides like atacamite (Cu2(OH)3Cl) are more common, arising among Cu ore beds oxidation zones in arid climates. [33]

Safety and biological impact

Copper(II) chloride can be toxic. Only concentrations below 1.3 ppm of aqueous copper ions are allowed in drinking water by the US Environmental Protection Agency. [34] If copper chloride is absorbed, it results in headache, diarrhea, a drop in blood pressure, and fever. Ingestion of large amounts may induce copper poisoning, CNS disorders, and haemolysis. [35] [36]

Copper(II) chloride has been demonstrated to cause chromosomal aberrations and mitotic cycle disturbances within A. cepa (onion) cells. [37] Such cellular disturbances lead to genotoxicity. Copper(II) chloride has also been studied as a harmful environmental pollutant. Often present in irrigation-grade water, it can negatively affect water and soil microbes. [38] Specifically, denitrifying bacteria were found to be very sensitive to the presence of copper(II) chloride. At a concentration of 0.95 mg/L, copper(II) chloride was found to cause a 50% inhibition (IC50) of the metabolic activity of denitrifying microbes. [39]

See also

Related Research Articles

<span class="mw-page-title-main">Sodium hypochlorite</span> Chemical compound (known in solution as bleach)

Sodium hypochlorite is an alkaline inorganic chemical compound with the formula NaOCl. It is commonly known in a dilute aqueous solution as bleach or chlorine bleach. It is the sodium salt of hypochlorous acid, consisting of sodium cations and hypochlorite anions.

Iron(III) chloride describes the inorganic compounds with the formula FeCl3(H2O)x. Also called ferric chloride, these compounds are some of the most important and commonplace compounds of iron. They are available both in anhydrous and in hydrated forms which are both hygroscopic. They feature iron in its +3 oxidation state. The anhydrous derivative is a Lewis acid, while all forms are mild oxidizing agents. It is used as a water cleaner and as an etchant for metals.

<span class="mw-page-title-main">Zinc chloride</span> Chemical compound

Zinc chloride is the name of inorganic chemical compounds with the formula ZnCl2·nH2O, with x ranging from 0 to 4.5, forming hydrates. Zinc chloride, anhydrous and its hydrates are colorless or white crystalline solids, and are highly soluble in water. Five hydrates of zinc chloride are known, as well as four forms of anhydrous zinc chloride. This salt is hygroscopic and even deliquescent. Zinc chloride finds wide application in textile processing, metallurgical fluxes, and chemical synthesis. No mineral with this chemical composition is known aside from the very rare mineral simonkolleite, Zn5(OH)8Cl2·H2O.

<span class="mw-page-title-main">Barium chloride</span> Chemical compound

Barium chloride is an inorganic compound with the formula BaCl2. It is one of the most common water-soluble salts of barium. Like most other water-soluble barium salts, it is a white powder, highly toxic, and imparts a yellow-green coloration to a flame. It is also hygroscopic, converting to the dihydrate BaCl2·2H2O, which are colourless crystals with a bitter salty taste. It has limited use in the laboratory and industry.

<span class="mw-page-title-main">Lead(II) chloride</span> Chemical compound

Lead(II) chloride (PbCl2) is an inorganic compound which is a white solid under ambient conditions. It is poorly soluble in water. Lead(II) chloride is one of the most important lead-based reagents. It also occurs naturally in the form of the mineral cotunnite.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

<span class="mw-page-title-main">Aluminium chloride</span> Chemical compound

Aluminium chloride, also known as aluminium trichloride, is an inorganic compound with the formula AlCl3. It forms a hexahydrate with the formula [Al(H2O)6]Cl3, containing six water molecules of hydration. Both the anhydrous form and the hexahydrate are colourless crystals, but samples are often contaminated with iron(III) chloride, giving them a yellow colour.

<span class="mw-page-title-main">Manganese(II) chloride</span> Chemical compound

Manganese(II) chloride is the dichloride salt of manganese, MnCl2. This inorganic chemical exists in the anhydrous form, as well as the dihydrate (MnCl2·2H2O) and tetrahydrate (MnCl2·4H2O), with the tetrahydrate being the most common form. Like many Mn(II) species, these salts are pink, with the paleness of the color being characteristic of transition metal complexes with high spin d5 configurations.

<span class="mw-page-title-main">Cobalt(II) chloride</span> Chemical compound

Cobalt(II) chloride is an inorganic compound, a salt of cobalt and chlorine, with the formula CoCl
2
. The compound forms several hydrates CoCl
2
·nH
2
O
, for n = 1, 2, 6, and 9. Claims of the formation of tri- and tetrahydrates have not been confirmed. The anhydrous form is a blue crystalline solid; the dihydrate is purple and the hexahydrate is pink. Commercial samples are usually the hexahydrate, which is one of the most commonly used cobalt salts in the lab.

<span class="mw-page-title-main">Copper(I) chloride</span> Chemical compound

Copper(I) chloride, commonly called cuprous chloride, is the lower chloride of copper, with the formula CuCl. The substance is a white solid sparingly soluble in water, but very soluble in concentrated hydrochloric acid. Impure samples appear green due to the presence of copper(II) chloride (CuCl2).

<span class="mw-page-title-main">Sodium bromide</span> Inorganic salt: NaBr

Sodium bromide is an inorganic compound with the formula NaBr. It is a high-melting white, crystalline solid that resembles sodium chloride. It is a widely used source of the bromide ion and has many applications.

<span class="mw-page-title-main">Chromium(III) chloride</span> Chemical compound

Chromium(III) chloride (also called chromic chloride) is an inorganic chemical compound with the chemical formula CrCl3. It forms several hydrates with the formula CrCl3·nH2O, among which are hydrates where n can be 5 (chromium(III) chloride pentahydrate CrCl3·5H2O) or 6 (chromium(III) chloride hexahydrate CrCl3·6H2O). The anhydrous compound with the formula CrCl3 are violet crystals, while the most common form of the chromium(III) chloride are the dark green crystals of hexahydrate, CrCl3·6H2O. Chromium chlorides find use as catalysts and as precursors to dyes for wool.

Iron(II) chloride, also known as ferrous chloride, is the chemical compound of formula FeCl2. It is a paramagnetic solid with a high melting point. The compound is white, but typical samples are often off-white. FeCl2 crystallizes from water as the greenish tetrahydrate, which is the form that is most commonly encountered in commerce and the laboratory. There is also a dihydrate. The compound is highly soluble in water, giving pale green solutions.

<span class="mw-page-title-main">Cadmium chloride</span> Chemical compound

Cadmium chloride is a white crystalline compound of cadmium and chloride, with the formula CdCl2. This salt is a hygroscopic solid that is highly soluble in water and slightly soluble in alcohol. The crystal structure of cadmium chloride (described below), is a reference for describing other crystal structures. Also known are CdCl2•H2O and the hemipentahydrate CdCl2•2.5H2O.

<span class="mw-page-title-main">Wacker process</span> Chemical reaction

The Wacker process or the Hoechst-Wacker process refers to the oxidation of ethylene to acetaldehyde in the presence of palladium(II) chloride and copper(II) chloride as the catalyst. This chemical reaction was one of the first homogeneous catalysis with organopalladium chemistry applied on an industrial scale.

<span class="mw-page-title-main">Gold(III) chloride</span> Chemical compound

Gold(III) chloride, traditionally called auric chloride, is an inorganic compound of gold and chlorine with the molecular formula Au2Cl6. The "III" in the name indicates that the gold has an oxidation state of +3, typical for many gold compounds. It has two forms, the monohydrate (AuCl3·H2O) and the anhydrous form, which are both hygroscopic and light-sensitive solids. This compound is a dimer of AuCl3. This compound has a few uses, such as an oxidizing agent and for catalyzing various organic reactions.

<span class="mw-page-title-main">Tin(II) chloride</span> Chemical compound

Tin(II) chloride, also known as stannous chloride, is a white crystalline solid with the formula SnCl2. It forms a stable dihydrate, but aqueous solutions tend to undergo hydrolysis, particularly if hot. SnCl2 is widely used as a reducing agent (in acid solution), and in electrolytic baths for tin-plating. Tin(II) chloride should not be confused with the other chloride of tin; tin(IV) chloride or stannic chloride (SnCl4).

<span class="mw-page-title-main">Metal halides</span>

Metal halides are compounds between metals and halogens. Some, such as sodium chloride are ionic, while others are covalently bonded. A few metal halides are discrete molecules, such as uranium hexafluoride, but most adopt polymeric structures, such as palladium chloride.

<span class="mw-page-title-main">Potassium tetrachloridocuprate(II)</span> Chemical compound

Potassium tetrachloridocuprate(II) is a salt with chemical formula K
2
CuCl
4
, also written as (K+
)2·[CuCl
4
]2−.

References

  1. A. F. Wells (1947). "The crystal structure of anhydrous cupric chloride, and the stereochemistry of the cupric atom". Journal of the Chemical Society: 1670–1675. doi:10.1039/JR9470001670.
  2. Sydney Brownstein; Nam Fong Han; Eric Gabe; Yvon LePage (1989). "A redetermination of the crystal structure of cupric chloride dihydrate". Zeitschrift für Kristallographie. 189 (1): 13–15. Bibcode:1989ZK....189...13B. doi:10.1524/zkri.1989.189.1-2.13.
  3. 1 2 3 NIOSH Pocket Guide to Chemical Hazards. "#0150". National Institute for Occupational Safety and Health (NIOSH).
  4. Wells, A.F. (1984). Structural Inorganic Chemistry. Oxford: Clarendon Press. p. 253. ISBN   0-19-855370-6.
  5. 1 2 3 4 5 6 Greenwood, N. N. and Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. p. 1183–1185 ISBN   0-7506-3365-4.
  6. Peter Baláž (2008). Mechanochemistry in Nanoscience and Minerals Engineering. Springer. p. 167. ISBN   978-3-540-74854-0.
  7. Carlo Corvaja (2009). Electron paramagnetic resonance: a practitioner's toolkit. John Wiley and Sons. p. 3. ISBN   978-0-470-25882-8.
  8. 1 2 3 4 5 6 7 8 9 10 11 Zhang, J.; Richardson, H. W. (2016). "Copper Compounds". Ullmann's Encyclopedia of Industrial Chemistry. pp. 1–31. doi:10.1002/14356007.a07_567.pub2. ISBN   978-3-527-30673-2.
  9. Shuiliang Zhou; Shaobo Shen; Dalong Zhao; Zhitao Zhang; Shiyu Yan (2017). "Evaporation and decomposition of eutectics of cupric chloride and sodium chloride". Journal of Thermal Analysis and Calorimetry. 129 (3): 1445–1452. doi:10.1007/s10973-017-6360-y. S2CID   99924382.
  10. 1 2 3 Richardson, H. W. (2003). "Copper Compounds". Kirk-Othmer Encyclopedia of Chemical Technology. doi:10.1002/0471238961.0315161618090308.a01.pub2. ISBN   0471238961.
  11. 1 2 Z. Wang; G. Marin; G. F. Naterer; K. S. Gabriel (2015). "Thermodynamics and kinetics of the thermal decomposition of cupric chloride in its hydrolysis reaction" (PDF). Journal of Thermal Analysis and Calorimetry. 119 (2): 815–823. doi:10.1007/s10973-014-3929-6. S2CID   93668361.
  12. Wilhelm Biltz; Werner Fischer (1927). "Beiträge zur systematischen Verwandtschaftslehre. XLIII. Über das System Cupro-/Cuprichlorid". Zeitschrift für anorganische und allgemeine Chemie (in German). 166 (1): 290–298. doi:10.1002/zaac.19271660126.
  13. A. G. Massey; N. R. Thompson; B. F. G. Johnson (1973). The Chemistry of Copper, Silver and Gold. Elsevier Science. p. 42. ISBN   9780080188607.
  14. 1 2 Naida S. Gill; F. B. Taylor (1967). Tetrahalo Complexes of Dipositive Metals in the First Transition Series. Inorganic Syntheses. Vol. 9. pp. 136–142. doi:10.1002/9780470132401.ch37. ISBN   978-0-470-13240-1.
  15. 1 2 H. Wayne Richardson (1997). Handbook of Copper Compounds and Applications. CRC Press. pp. 24–68. ISBN   9781482277463.
  16. W. Libus; S. K. Hoffmann; M. Kluczkowski; H. Twardowska (1980). "Solution equilibriums of copper(II) chloride in pyridine and pyridine-diluent mixtures". Inorganic Chemistry. 19 (6): 1625–1632. doi:10.1021/ic50208a039.
  17. 1 2 S. H. Bertz, E. H. Fairchild, in Handbook of Reagents for Organic Synthesis, Volume 1: Reagents, Auxiliaries and Catalysts for C-C Bond Formation, (R. M. Coates, S. E. Denmark, eds.), pp. 220–223, Wiley, New York, 1738.
  18. W. L. F. Armarego; Christina Li Lin Chai (2009-05-22). Purification of Laboratory Chemicals (Google Books excerpt) (6th ed.). Butterworth-Heinemann. p. 461. ISBN   978-1-85617-567-8.
  19. J. Ji; W. C. Cooper (1990). "Electrochemical preparation of cuprous oxide powder: Part I. Basic electrochemistry". Journal of Applied Electrochemistry. 20 (5): 818–825. doi:10.1007/BF01094312. S2CID   95677720.
  20. 1 2 3 4 5 6 Nicholas D. P. Cosford; Pauline Pei Li; Thierry Ollevier (2015). "Copper(II) Chloride". Encyclopedia of Reagents for Organic Synthesis: 1–8. doi:10.1002/047084289X.rc214.pub3. ISBN   9780470842898.
  21. C. E. Castro; E. J. Gaughan; D. C. Owsley (1965). "Cupric Halide Halogenations". Journal of Organic Chemistry . 30 (2): 587. doi:10.1021/jo01013a069.
  22. J. Brussee; J. L. G. Groenendijk; J. M. Koppele; A. C. A. Jansen (1985). "On the mechanism of the formation of s(−)-(1, 1'-binaphthalene)-2,2'-diol via copper(II)amine complexes". Tetrahedron . 41 (16): 3313. doi:10.1016/S0040-4020(01)96682-7.
  23. Chandrasekhar, M.; Kusum L. Chandra; Vinod K. Singh (2003). "Total Synthesis of (+)-Boronolide, (+)-Deacetylboronolide, and (+)-Dideacetylboronolide". Journal of Organic Chemistry . 68 (10): 4039–4045. doi:10.1021/jo0269058. PMID   12737588.
  24. Krishna, Palakodety Radha; G. Dayaker (2007). "A stereoselective total synthesis of (−)-andrachcinidine via an olefin cross-metathesis protocol". Tetrahedron Letters . 48 (41). Elsevier: 7279–7282. doi:10.1016/j.tetlet.2007.08.053.
  25. Clark, Jim (August 2018). "Flame Tests". chemguide.co.uk. Archived from the original on November 27, 2020. Retrieved January 10, 2021.
  26. US 20150300958 A1,Evan Koon Lun Yuuji Hajime,"Adjustable colorimetric moisture indicators",published 2015
  27. "Cobalt dichloride". European Chemicals Agency. ECHA. Retrieved 30 May 2023.
  28. B.H. Patel (2011). "11 - Natural dyes". In Clark, M. (ed.). Handbook of Textile and Industrial Dyeing. Woodhead Publishing. pp. 412–413. ISBN   9781845696955 . Retrieved 2 June 2023.
  29. Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, Harry S. Parker, and Nicolas C. Panagiotopoulos (1981) Copper chloride hydrate (eriochalcite), in Standard X-ray Diffraction Powder Patterns National Bureau of Standards, Monograph 25, Section 18; page 33.
  30. "Tolbachite". mindat.org. Retrieved 24 August 2023.
  31. "Eriochalcite". mindat.org. Retrieved 24 August 2023.
  32. "The New IMA List of Minerals". Università degli studi di Trieste. International Mineralogical Association. Retrieved 24 August 2023.
  33. "Atacamite". mindat.org. Retrieved 30 May 2023.
  34. "National Primary Drinking Water Regulations". EPA. 30 November 2015. Retrieved 29 May 2023.
  35. "Copper: Health Information Summary" (PDF). Environmental Fact Sheet. New Hampshire Department of Environmental Services. 2005. ARD-EHP-9. Archived from the original (PDF) on 20 January 2017.
  36. "Safety Data Sheet". Sigma Aldrich. Retrieved 30 June 2023.
  37. Macar, Tuğçe Kalefetoğlu (2020). "Resveratrol ameliorates the physiological, biochemical, cytogenetic, and anatomical toxicities induced by copper (II) chloride exposure in Allium cepa L." Environmental Science and Pollution Research. 27 (1): 657–667. doi:10.1007/s11356-019-06920-2. PMID   31808086. S2CID   208649491.
  38. Shiyab, Safwan (2018). "Phytoaccumulation of copper from irrigation water and its effect on the internal structure of lettuce". Agriculture. 8 (2): 29. doi: 10.3390/agriculture8020029 .
  39. Ochoa-Herrera, Valeria (2011). "Toxicity of copper (II) ions to microorganisms in biological wastewater treatment systems". Science of the Total Environment. 412 (1): 380–385. Bibcode:2011ScTEn.412..380O. doi:10.1016/j.scitotenv.2011.09.072. PMID   22030247.

Further reading