Daisyworld

Last updated
Plots from a standard black & white DaisyWorld simulation. DaisyWorld Plots For Wikipedia.png
Plots from a standard black & white DaisyWorld simulation.

Daisyworld, a computer simulation, is a hypothetical world orbiting a star whose radiant energy is slowly increasing or decreasing. It is meant to mimic important elements of the Earth-Sun system. James Lovelock and Andrew Watson introduced it in a paper published in 1983 [1] to illustrate the plausibility of the Gaia hypothesis. In the original 1983 version, Daisyworld is seeded with two varieties of daisy as its only life forms: black daisies and white daisies. White petaled daisies reflect light, while black petaled daisies absorb light. The simulation tracks the two daisy populations and the surface temperature of Daisyworld as the sun's rays grow more powerful. The surface temperature of Daisyworld remains almost constant over a broad range of solar output.

Contents

Mathematical model to sustain the Gaia hypothesis

The purpose of the model is to demonstrate that feedback mechanisms can evolve from the actions or activities of self-interested organisms, rather than through classic group selection mechanisms. [2] Daisyworld examines the energy budget of a planet populated by two different types of plants, black daisies and white daisies. The colour of the daisies influences the albedo of the planet such that black daisies absorb light and warm the planet, while white daisies reflect light and cool the planet. Competition between the daisies (based on temperature-effects on growth rates) leads to a balance of populations that tends to favour a planetary temperature close to the optimum for daisy growth.

Lovelock and Watson demonstrated the stability of Daisyworld by making its sun evolve along the main sequence, taking it from low to high solar constant. This perturbation of Daisyworld's receipt of solar radiation caused the balance of daisies to gradually shift from black to white but the planetary temperature was always regulated back to this optimum (except at the extreme ends of solar evolution). This situation is very different from the corresponding abiotic world, where temperature is unregulated and rises linearly with solar output.

Later versions of Daisyworld introduced a range of grey daisies, as well as populations of grazers and predators, and found that these further increased the stability of the homeostasis. [3] [4] More recently, other research, modeling the real biochemical cycles of Earth, and using various types of organisms (e.g. photosynthesisers, decomposers, herbivores and primary and secondary carnivores) has also been shown to produce Daisyworld-like regulation and stability, which helps to explain planetary biological diversity. [5]

This enables nutrient recycling within a regulatory framework derived by natural selection amongst species, where one being's harmful waste becomes low energy food for members of another guild. This research on the Redfield ratio of nitrogen to phosphorus shows that local biotic processes can regulate global systems (See Keith Downing [ permanent dead link ] & Peter Zvirinsky, The Simulated Evolution of Biochemical Guilds: Reconciling Gaia Theory with Natural Selection).

Original 1983 simulation synopsis

A short video about the DaisyWorld model and its implications for real world earth science.

At the beginning of the simulation, the sun's rays are weak and Daisyworld is too cold to support any life. Its surface is barren, and gray. As the luminosity of the sun's rays increases, germination of black daisies becomes possible. Because black daisies absorb more of the sun's radiant energy, they are able to increase their individual temperatures to healthy levels on the still cool surface of Daisyworld. As a result, they thrive and the population soon grows large enough to increase the average surface temperature of Daisyworld.

As the surface heats up, it becomes more habitable for white daisies, whose competing population grows to rival the black daisy population. As the two populations reach equilibrium, so too does the surface temperature of Daisyworld, which settles on a value most comfortable for both populations.

In this first phase of the simulation we see that black daisies have warmed Daisyworld so that it is habitable over a wider range of solar luminosity than would have been possible on a barren, gray planet. This allowed growth of the white daisy population, and the two populations of daisies are now working together to regulate the surface temperature.

The second phase of the simulation documents what happens as the sun's luminosity continues to increase, heating the surface of Daisyworld beyond a comfortable range for the daisies. This temperature increase causes white daisies, who are better able to stay cool because of their high albedo or ability to reflect sunlight, to gain a selective advantage over the black daisies. White daisies begin replacing black daisies, which has a cooling effect on Daisyworld. The result is that Daisyworld's surface temperature remains habitable - in fact almost constant - even as the luminosity of the sun continues to increase.

In the third phase of the simulation, the sun's rays have grown so powerful that soon even the white daisies can no longer survive. At a certain luminosity their population crashes, and the barren, gray surface of Daisyworld, no longer able to reflect the sun's rays, rapidly heats up.

At this point in the simulation solar luminosity is programmed to decline, retracing its original path to its initial value. Even as it declines to levels that previously supported vast populations of daisies in the third phase, no daisies are able to grow because the surface of barren, gray Daisyworld is still far too hot. Eventually, the sun's rays decrease in power to a more comfortable level which allows white daisies to grow, who begin cooling the planet.

Relevance to Earth

Because Daisyworld is so simplistic, having for example, no atmosphere, no animals, only one species of plant life, and only the most basic population growth and death models, it should not be directly compared to Earth. This was stated very clearly by the original authors. Even so, it provided a number of useful predictions of how Earth's biosphere may respond to, for example, human interference. Later adaptations of Daisyworld (discussed below), which added many layers of complexity, still showed the same basic trends of the original model.

One prediction of the simulation is that the biosphere works to regulate the climate, making it habitable over a wide range of solar luminosity. Many examples of these regulatory systems have been found on Earth.[ citation needed ]

Modifications to the original simulation

Daisyworld was designed to refute the idea that there was something inherently mystical about the Gaia hypothesis that Earth's surface displays homeostatic and homeorhetic properties similar to those of a living organism. Specifically, thermoregulation was addressed. The Gaia hypothesis had attracted a substantial amount of criticism from scientists such as Richard Dawkins, [6] who argued that planet-level thermoregulation was impossible without planetary natural selection, which might involve evidence of dead planets that did not thermoregulate. Dr. W. Ford Doolittle [7] rejected the notion of planetary regulation because it seemed to require a "secret consensus" among organisms, thus some sort of inexplicable purpose on a planetary scale. Incidentally, neither of these neoDarwinians made a close examination of the wide-ranging evidence presented in Lovelock's books that was suggestive of planetary regulation, dismissing the theory based on what they saw as its incompatibility with the latest views on the processes by which evolution works. Lovelock's model countered the criticism that some "secret consensus" would be required for planetary regulation by showing how in this model thermoregulation of the planet, beneficial to the two species, arises naturally. [8]

Later criticism of Daisyworld itself centers on the fact that although it is often used as an analogy for Earth, the original simulation leaves out many important details of the true Earth system. For example, the system requires an ad-hoc death rate (γ) to sustain homeostasis, and it does not take into account the difference between species-level phenomena and individual level phenomena. Detractors of the simulation believed inclusion of these details would cause it to become unstable, and therefore, false. Many of these issues are addressed in a 2001 paper by Timothy Lenton and James Lovelock, which shows that inclusion of these factors actually improves Daisyworld's ability to regulate its climate. [3]

Biodiversity and stability of ecosystems

The importance of the large number of species in an ecosystem, led to two sets of views about the role played by biodiversity in the stability of ecosystems in Gaia theory. In one school of thought labelled the "species redundancy" hypothesis, proposed by Australian ecologist Brian Walker, most species are seen as having little contribution overall in the stability, comparable to the passengers in an aeroplane who play little role in its successful flight. The hypothesis leads to the conclusion that only a few key species are necessary for a healthy ecosystem. The "rivet-popper" hypothesis put forth by Paul R. Ehrlich and his wife Anne H. Ehrlich compares each species forming part of an ecosystem with a rivet on the aeroplane (represented by the ecosystem). The progressive loss of species mirrors the progressive loss of rivets from the plane, weakening it till it is no longer sustainable and crashes. [9]

Later extensions of the Daisyworld simulation which included rabbits, foxes and other species, led to a surprising finding that the larger the number of species, the greater the improving effects on the entire planet (i.e., the temperature regulation was improved). It also showed that the system was robust and stable even when perturbed. Daisyworld simulations where environmental changes were stable gradually became less diverse over time; in contrast gentle perturbations led to bursts of species richness. These findings lent support to the idea that biodiversity is valuable. [10]

This finding was supported by a 1994 study of the factors species composition, dynamics and diversity in successional and native grasslands in Minnesota by David Tilman and John A. Downing which concluded that "primary productivity in more diverse plant communities is more resistant to, and recovers more fully from, a major drought". They go on to add "Our results support the diversity stability hypothesis but not the alternative hypothesis that most species are functionally redundant". [9] [11]

See also

Related Research Articles

Gaia philosophy is a broadly inclusive term for relating concepts about, humanity as an effect of the life of this planet.

<span class="mw-page-title-main">James Lovelock</span> English scientist (1919–2022)

James Ephraim Lovelock was an English independent scientist, environmentalist and futurist. He is best known for proposing the Gaia hypothesis, which postulates that the Earth functions as a self-regulating system.

<span class="mw-page-title-main">Terraforming</span> Hypothetical planetary engineering process

Terraforming or terraformation ("Earth-shaping") is the hypothetical process of deliberately modifying the atmosphere, temperature, surface topography or ecology of a planet, moon, or other body to be similar to the environment of Earth to make it habitable for humans to live on.

<i>SimEarth</i> 1990 video game

SimEarth: The Living Planet is a life simulation game, the second designed by Will Wright. and published in 1990 by Maxis. In SimEarth, the player controls the development of a planet. English scientist James Lovelock served as an advisor and his Gaia hypothesis of planet evolution was incorporated into the game. Versions were made for the Macintosh, Atari ST, Amiga, IBM PC, Super Nintendo Entertainment System, Sega CD, and TurboGrafx-16. It was re-released for the Wii Virtual Console. In 1996, several of Maxis' simulation games were re-released under the Maxis Collector Series with greater compatibility with Windows 95 and differing box art, including the addition of Classics beneath the title. SimEarth was re-released in 1997 under the Classics label.

<span class="mw-page-title-main">Gaia hypothesis</span> Paradigm that living organisms interact with their surroundings in a self-regulating system

The Gaia hypothesis, also known as the Gaia theory, Gaia paradigm, or the Gaia principle, proposes that living organisms interact with their inorganic surroundings on Earth to form a synergistic and self-regulating, complex system that helps to maintain and perpetuate the conditions for life on the planet.

<span class="mw-page-title-main">Rare Earth hypothesis</span> Hypothesis that complex extraterrestrial life is improbable and extremely rare

In planetary astronomy and astrobiology, the Rare Earth hypothesis argues that the origin of life and the evolution of biological complexity such as sexually reproducing, multicellular organisms on Earth required an improbable combination of astrophysical and geological events and circumstances.

The faint young Sun paradox or faint young Sun problem describes the apparent contradiction between observations of liquid water early in Earth's history and the astrophysical expectation that the Sun's output would be only 70 percent as intense during that epoch as it is during the modern epoch. The paradox is this: with the young sun's output at only 70 percent of its current output, early Earth would be expected to be completely frozen – but early Earth seems to have had liquid water and supported life.

<span class="mw-page-title-main">Planetary habitability</span> Known extent to which a planet is suitable for life

Planetary habitability is the measure of a planet's or a natural satellite's potential to develop and maintain environments hospitable to life. Life may be generated directly on a planet or satellite endogenously or be transferred to it from another body, through a hypothetical process known as panspermia. Environments do not need to contain life to be considered habitable nor are accepted habitable zones (HZ) the only areas in which life might arise.

HD 28185 is a yellow dwarf star similar to the Sun located 128 light-years away from Earth in the constellation Eridanus. The designation HD 28185 refers to its entry in the Henry Draper catalogue. The star is known to possess one long-period extrasolar planet.

<span class="mw-page-title-main">HD 69830 d</span> Ice giant exoplanet orbiting HD 69830

HD 69830 d is an exoplanet likely orbiting within the habitable zone of the star HD 69830, the outermost of three such planets discovered in the system. It is located approximately 40.7 light-years (12.49 parsecs, or 3.8505×1014 km) from Earth in the constellation of Puppis. The exoplanet was found by using the radial velocity method, from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star.

<span class="mw-page-title-main">CLAW hypothesis</span> A hypothesised negative feedback loop connecting the marine biota and the climate

The CLAW hypothesis proposes a negative feedback loop that operates between ocean ecosystems and the Earth's climate. The hypothesis specifically proposes that particular phytoplankton that produce dimethyl sulfide are responsive to variations in climate forcing, and that these responses act to stabilise the temperature of the Earth's atmosphere. The CLAW hypothesis was originally proposed by Robert Jay Charlson, James Lovelock, Meinrat Andreae and Stephen G. Warren, and takes its acronym from the first letter of their surnames.

Andrew James Watson FRS is a British marine and atmospheric scientist and an expert in processes affecting atmospheric carbon dioxide and oxygen concentrations. He was formerly a Professor of biogeochemistry in the School of Environmental Sciences at the University of East Anglia, in 2013 he moved to a position as Professor at the College of Life and Environmental Sciences at the University of Exeter.

<span class="mw-page-title-main">Habitability of natural satellites</span> Measure of the potential of natural satellites to have environments hospitable to life

The habitability of natural satellites describes the study of a moon's potential to provide habitats for life, though is not an indicator that it harbors it. Natural satellites are expected to outnumber planets by a large margin and the study is therefore important to astrobiology and the search for extraterrestrial life. There are, nevertheless, significant environmental variables specific to moons.

<span class="mw-page-title-main">Future of Earth</span> Long-term extrapolated geological and biological changes of Planet Earth

The biological and geological future of Earth can be extrapolated based on the estimated effects of several long-term influences. These include the chemistry at Earth's surface, the cooling rate of the planet's interior, the gravitational interactions with other objects in the Solar System, and a steady increase in the Sun's luminosity. An uncertain factor is the pervasive influence of technology introduced by humans, such as climate engineering, which could cause significant changes to the planet. For example, the current Holocene extinction is being caused by technology, and the effects may last for up to five million years. In turn, technology may result in the extinction of humanity, leaving the planet to gradually return to a slower evolutionary pace resulting solely from long-term natural processes.

<span class="mw-page-title-main">Earth analog</span> Planet with environment similar to Earths

An Earth analog, also called an Earth analogue, Earth twin, or second Earth, is a planet or moon with environmental conditions similar to those found on Earth. The term Earth-like planet is also used, but this term may refer to any terrestrial planet.

<span class="mw-page-title-main">Kepler-42</span> Red dwarf star in the constellation Cygnus

Kepler-42, formerly known as KOI-961, is a red dwarf located in the constellation Cygnus and approximately 131 light years from the Sun. It has three known extrasolar planets, all of which are smaller than Earth in radius, and likely also in mass.

<span class="mw-page-title-main">Kepler-62</span> K-type star in the constellation Lyra

Kepler-62 is a K-type main sequence star cooler and smaller than the Sun, located roughly 980 light-years from Earth in the constellation Lyra. It resides within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission used to detect planets that may be transiting their stars. On April 18, 2013, it was announced that the star has five planets, two of which, Kepler-62e and Kepler-62f are within the star's habitable zone. The outermost, Kepler-62f, is likely a rocky planet.

<span class="mw-page-title-main">Kepler-452</span> G-type main-sequence star in the constellation Cygnus

Kepler-452 is a G-type main-sequence star located about 1,800 light-years away from Earth in the Cygnus constellation. Although similar in temperature to the Sun, it is 20% brighter, 3.7% more massive and 11% larger. Alongside this, the star is approximately six billion years old and possesses a high metallicity. Thus, Kepler-452 can be considered a solar twin, although it could be considered a solar analog due to its age.

K2-72 is a cool red dwarf star of spectral class M2.7V located about 217 light-years away from the Earth in the constellation of Aquarius. It is known to host four planets, all similar in size to Earth, with one of them residing within the habitable zone.

Kepler-737b is a super-Earth exoplanet 669 light years away. There is a chance it could be on the inner edge of the habitable zone.

References

  1. Watson, A.J.; J.E. Lovelock (1983). "Biological homeostasis of the global environment: the parable of Daisyworld". Tellus B . 35 (4): 286–9. Bibcode:1983TellB..35..284W. doi:10.1111/j.1600-0889.1983.tb00031.x.
  2. Watson, A.J.; Lovelock, J.E (1983). "Biological homeostasis of the global environment: the parable of Daisyworld". Tellus. 35B (4): 286–9. Bibcode:1983TellB..35..284W. doi:10.1111/j.1600-0889.1983.tb00031.x.
  3. 1 2 T. M. Lenton; J. E. Lovelock (2001). "Daisyworld revisited: quantifying biological effects on planetary self-regulation". Tellus Series B . 53 (3): 288–305. Bibcode:2001TellB..53..288L. doi:10.1034/j.1600-0889.2001.01191.x.
  4. von Bloh, W.; Block, A.; Parade, M.; Schellnhuber, H. J. (1999-04-15). "Tutorial Modelling of geosphere–biosphere interactions: the effect of percolation-type habitat fragmentation". Physica A: Statistical Mechanics and Its Applications. 266 (1): 186–196. Bibcode:1999PhyA..266..186V. doi:10.1016/S0378-4371(98)00590-1. ISSN   0378-4371.
  5. "biosphere | National Geographic Society". education.nationalgeographic.org. Retrieved 2022-06-17.
  6. Dawkins, R (1982). The extended phenotype: the long reach of the gene. Oxford University Press. ISBN   0-19-286088-7.
  7. W. F. Doolittle (Spring 1981). "Is nature really motherly?". The Coevolution Quarterly: 58–63.
  8. D. Sagan; J. Whiteside (2004). "Gradient-reduction theory: thermodynamics and the purpose of life". In Stephen H. Schneider; James R. Miller; Eileen Crist; Penelope J. Boston (eds.). Scientists Debate Gaia: The Next Century. MIT Press. pp. 173–186. doi:10.7551/mitpress/9780262194983.003.0017.
  9. 1 2 Richard E. Leakey; Roger Lewin (1996) [1995]. The Sixth Extinction: Patterns of Life and the Future of Humankind. Random House–Anchor. pp. 137–142. ISBN   978-0-385-46809-1.
  10. James Lovelock (2000) [1988]. The Ages of Gaia: A Biography of Our Living Earth (2nd, rev. ed.). Oxford University Press. pp. 213–216. ISBN   978-0-19-286217-4.
  11. David Tilman; John A. Downing (1994). "Biodiversity and stability in grasslands" (PDF). Nature. 367 (6461): 363–365. Bibcode:1994Natur.367..363T. doi:10.1038/367363a0. S2CID   4324145. Archived from the original (PDF) on 27 September 2011.

Further reading