Germination

Last updated
Sunflower seedlings, three days after germination Sunflower seedlings.jpg
Sunflower seedlings, three days after germination
Sunflower time lapse with soil. cross section, showing how the root and the upper part of the plant grow Sunflower growing time lapse.gif
Sunflower time lapse with soil. cross section, showing how the root and the upper part of the plant grow

Germination is the process by which an organism grows from a seed or spore. The term is applied to the sprouting of a seedling from a seed of an angiosperm or gymnosperm, the growth of a sporeling from a spore, such as the spores of fungi, ferns, bacteria, and the growth of the pollen tube from the pollen grain of a seed plant.

Contents

Seed plants

A seed pot used in horticulture for sowing and taking plant cuttings and growing plugs Horticulture Tray3.jpg
A seed pot used in horticulture for sowing and taking plant cuttings and growing plugs
Germination glass (glass sprouter jar) with a plastic sieve-lid Sprossenglas.JPG
Germination glass (glass sprouter jar) with a plastic sieve-lid
Brassica campestris germinating seeds Raapstelen gekiemde zaden (Brassica campestris germinating seeds).jpg
Brassica campestris germinating seeds
Time-lapse video of mung bean seeds germinating

Germination is usually the growth of a plant contained within a seed resulting in the formation of the seedling. It is also the process of reactivation of metabolic machinery of the seed resulting in the emergence of radicle and plumule. The seed of a vascular plant is a small package produced in a fruit or cone after the union of male and female reproductive cells. All fully developed seeds contain an embryo and, in most plant species some store of food reserves, wrapped in a seed coat. Dormant seeds are viable seeds that do not germinate because they require specific internal or environmental stimuli to resume growth. Under proper conditions, the seed begins to germinate and the embryo resumes growth, developing into a seedling.[ clarification needed ]

Step 1: Water imbibition, the uptake of water, results in rupture of seed coat.< /> Step 2: The imbibition of the seed coat results in emergence of the radicle (1) and the plumule (2); the cotyledons are unfolded (3).
Step 3: This marks the final step in the germination of the seed, where the cotyledons are expanded, which are the true leaves. Note: Temperature must be kept at an optimum level. Seed Germination.png
Step 1: Water imbibition, the uptake of water, results in rupture of seed coat.< /> Step 2: The imbibition of the seed coat results in emergence of the radicle (1) and the plumule (2); the cotyledons are unfolded (3).
Step 3: This marks the final step in the germination of the seed, where the cotyledons are expanded, which are the true leaves. Note: Temperature must be kept at an optimum level.

Disturbance of soil can result in vigorous plant growth by exposing seeds already in the soil to changes in environmental factors where germination may have previously been inhibited by depth of the seeds or soil that was too compact. This is often observed at gravesites after a burial. [1]

Seed germination depends on both internal and external conditions. The most important external factors include right temperature, water, oxygen or air and sometimes light or darkness. [2] Various plants require different variables for successful seed germination. Often this depends on the individual seed variety and is closely linked to the ecological conditions of a plant's natural habitat. For some seeds, their future germination response is affected by environmental conditions during seed formation; most often these responses are types of seed dormancy.

Most common annual vegetables have optimal germination temperatures between 75–90 F (24–32 C), though many species (e.g. radishes or spinach) can germinate at significantly lower temperatures, as low as 40 F (4 C), thus allowing them to be grown from seeds in cooler climates. Suboptimal temperatures lead to lower success rates and longer germination periods.

Malted (germinated) barley grains Sjb whiskey malt.jpg
Malted (germinated) barley grains

Dormancy

Some live seeds are dormant and need more time, and/or need to be subjected to specific environmental conditions before they will germinate. Seed dormancy can originate in different parts of the seed, for example, within the embryo; in other cases the seed coat is involved. Dormancy breaking often involves changes in membranes, initiated by dormancy-breaking signals. This generally occurs only within hydrated seeds. [6] Factors affecting seed dormancy include the presence of certain plant hormones, notably abscisic acid, which inhibits germination, and gibberellin, which ends seed dormancy. In brewing, barley seeds are treated with gibberellin to ensure uniform seed germination for the production of barley malt. [2]

Seedling establishment

In some definitions, the appearance of the radicle marks the end of germination and the beginning of "establishment", a period that utilizes the food reserves stored in the seed. Germination and establishment as an independent organism are critical phases in the life of a plant when they are the most vulnerable to injury, disease, and water stress. [2] The germination index can be used as an indicator of phytotoxicity in soils. The mortality between dispersal of seeds and completion of the establishment can be so high that many species have adapted to produce large numbers of seeds.

Germination rate and germination capacity

Germination of seedlings raised from seeds of eucalyptus after three days of sowing Seedling of Eucalyptus.jpg
Germination of seedlings raised from seeds of eucalyptus after three days of sowing

In agriculture and gardening, the germination rate describes how many seeds of a particular plant species, variety or seedlot are likely to germinate over a given period. It is a measure of germination time course and is usually expressed as a percentage, e.g., an 85% germination rate indicates that about 85 out of 100 seeds will probably germinate under proper conditions over the germination period given. Seed germination rate is determined by the seed genetic composition, morphological features and environmental factors.[ citation needed ] The germination rate is useful for calculating the number of seeds needed for a given area or desired number of plants. For seed physiologists and seed scientists "germination rate" is the reciprocal of time taken for the process of germination to complete starting from time of sowing. On the other hand, the number of seed able to complete germination in a population (i.e. seed lot) is referred to as germination capacity.

Repair of DNA damage

Seed quality deteriorates with age, and this is associated with accumulation of genome damage. [7] During germination, repair processes are activated to deal with accumulated DNA damage. [8] In particular, single- and double-strand breaks in DNA can be repaired. [9] The DNA damage checkpoint kinase ATM has a major role in integrating progression through germination with repair responses to the DNA damages accumulated by the aged seed. [10]

Dicot germination

The stages of germination of a pea plant: A. seed coat, B. radicle, C. primary root, D. secondary root, E. cotyledon, F. plumule, G. leaf, H. tap root Stages of germination in pea plants.svg
The stages of germination of a pea plant: A. seed coat, B. radicle, C. primary root, D. secondary root, E. cotyledon, F. plumule, G. leaf, H. tap root

The part of the plant that first emerges from the seed is the embryonic root, termed the radicle or primary root. It allows the seedling to become anchored in the ground and start absorbing water. After the root absorbs water, an embryonic shoot emerges from the seed. This shoot comprises three main parts: the cotyledons (seed leaves), the section of shoot below the cotyledons (hypocotyl), and the section of shoot above the cotyledons (epicotyl). The way the shoot emerges differs among plant groups. [2]

Epigeal

Epigeal germination (or epigeous germination) is a botanical term indicating that the germination takes place above the ground. In epigeal germination, the hypocotyl elongates and forms a hook, pulling rather than pushing the cotyledons and apical meristem through the soil. Once it reaches the surface, it straightens and pulls the cotyledons and shoot tip of the growing seedlings into the air. Beans, tamarind, and papaya are examples of plants that germinate this way. [2]

Hypogeal

Germination can also be done by hypogeal germination (or hypogeous germination), where the epicotyl elongates and forms the hook. In this type of germination, the cotyledons stay underground where they eventually decompose. Peas, chickpeas and mango, for example, germinate this way. [11]

Monocot germination

In monocot seeds, the embryo's radicle and cotyledon are covered by a coleorhiza and coleoptile, respectively. The coleorhiza is the first part to grow out of the seed, followed by the radicle. The coleoptile is then pushed up through the ground until it reaches the surface. There, it stops elongating and the first leaves emerge. [2]

Precocious germination

When a seed germinates without undergoing all four stages of seed development, i.e., globular, heart shape, torpedo shape, and cotyledonary stage, it is known as precocious germination.

Pollen germination

Another germination event during the life cycle of gymnosperms and flowering plants is the germination of a pollen grain after pollination. Like seeds, pollen grains are severely dehydrated before being released to facilitate their dispersal from one plant to another. They consist of a protective coat containing several cells (up to 8 in gymnosperms, 2–3 in flowering plants). One of these cells is a tube cell. Once the pollen grain lands on the stigma of a receptive flower (or a female cone in gymnosperms), it takes up water and germinates. Pollen germination is facilitated by hydration on the stigma, as well as by the structure and physiology of the stigma and style. [2] Pollen can also be induced to germinate in vitro (in a petri dish or test tube). [12] [13]

During germination, the tube cell elongates into a pollen tube. In the flower, the pollen tube then grows towards the ovule where it discharges the sperm produced in the pollen grain for fertilization. The germinated pollen grain with its two sperm cells is the mature male microgametophyte of these plants. [2]

Self-incompatibility

Since most plants carry both male and female reproductive organs in their flowers, there is a high risk of self-pollination and thus inbreeding. Some plants use the control of pollen germination as a way to prevent this self-pollination. Germination and growth of the pollen tube involve molecular signaling between stigma and pollen. In self-incompatibility in plants, the stigma of certain plants can molecularly recognize pollen from the same plant and prevent it from germinating. [14]

Spore germination

Germination can also refer to the emergence of cells from resting spores and the growth of sporeling hyphae or thalli from spores in fungi, algae and some plants.

Conidia are asexual reproductive (reproduction without the fusing of gametes) spores of fungi which germinate under specific conditions. A variety of cells can be formed from the germinating conidia. The most common are germ tubes which grow and develop into hyphae. The initial formation and subsequent elongation of the germ tube in the fungus Aspergillus niger has been captured in 3D using holotomography microscopy. Another type of cell is a conidial anastomosis tube (CAT); these differ from germ tubes in that they are thinner, shorter, lack branches, exhibit determinate growth and home toward each other. Each cell is of a tubular shape, but the conidial anastomosis tube forms a bridge that allows fusion between conidia. [15] [16]

3D-visualization of Aspergillus niger spore germination. This image has been captured using holotomography microscopy. 3D-visualization of Aspergillus niger spore germination.gif
3D-visualization of Aspergillus niger spore germination. This image has been captured using holotomography microscopy.

Resting spores

In resting spores, germination involves cracking the thick cell wall of the dormant spore. For example, in zygomycetes the thick-walled zygosporangium cracks open and the zygospore inside gives rise to the emerging sporangiophore. In slime molds, germination refers to the emergence of amoeboid cells from the hardened spore. After cracking the spore coat, further development involves cell division, but not necessarily the development of a multicellular organism (for example in the free-living amoebas of slime molds). [2]

Ferns and mosses

In plants such as bryophytes, ferns, and a few others, spores germinate into independent gametophytes. In the bryophytes (e.g., mosses and liverworts), spores germinate into protonemata, similar to fungal hyphae, from which the gametophyte grows. In ferns, the gametophytes are small, heart-shaped prothalli that can often be found underneath a spore-shedding adult plant. [2]

Bacteria

Bacterial spores can be exospores or endospores which are dormant structures produced by a number of different bacteria. They have no or very low metabolic activity and are formed in response to adverse environmental conditions. [17] They allow survival and are not a form of reproduction. [18] Under suitable conditions the spore germinates to produce a viable bacterium. Endospores are formed inside the mother cell, whereas exospores are formed at the end of the mother cell as a bud. [19]

Light-stimulated germination

As mentioned earlier, light can be an environmental factor that stimulates the germination process. The seed needs to be able to determine when is the perfect time to germinate and they do that by sensing environmental cues. Once germination starts, the stored nutrients that have accumulated during maturation start to be digested which then supports cell expansion and overall growth. [20] Within light-stimulated germination, phytochrome B (PHYB) is the photoreceptor that is responsible for the beginning stages of germination. When red light is present, PHYB is converted to its active form and moves from the cytoplasm to the nucleus where it upregulates the degradation of PIF1. PIF1, phytochrome-interaction-factor-1, negatively regulates germination by increasing the expression of proteins that repress the synthesis of gibberellin (GA), a major hormone in the germination process. [21] Another factor that promotes germination is HFR1 which accumulates in light in some way and forms inactive heterodimers with PIF1. [22]

Although the exact mechanism is not known, nitric oxide (NO) plays a role in this pathway as well. NO is thought to repress PIF1 gene expression and stabilises HFR1 in some way to support the start of germination. [20] Bethke et al. (2006) exposed dormant Arabidopsis seeds to NO gas and within the next 4 days, 90% of the seeds broke dormancy and germinated. The authors also looked at how NO and GA effects the vacuolation process of aleurone cells that allow the movement of nutrients to be digested. A NO mutant resulted in inhibition of vacuolation but when GA was later added the process was active again leading to the belief that NO is prior to GA in the pathway. NO may also lead to the decrease in sensitivity of abscisic acid (ABA), a plant hormone largely responsible for seed dormancy. [23] The balance between GA and ABA is important. When ABA levels are higher than GA then that leads to dormant seeds and when GA levels are higher, seeds germinate. [24] The switch between seed dormancy and germination needs to occur at a time when the seed has the best chances of surviving and an important cue that begins the process of seed germination and overall plant growth is light.

See also

Related Research Articles

<span class="mw-page-title-main">Embryo</span> Multicellular diploid eukaryote in its earliest stage of development

An embryo is the initial stage of development for a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sperm cell. The resulting fusion of these two cells produces a single-celled zygote that undergoes many cell divisions that produce cells known as blastomeres. The blastomeres are arranged as a solid ball that when reaching a certain size, called a morula, takes in fluid to create a cavity called a blastocoel. The structure is then termed a blastula, or a blastocyst in mammals.

<span class="mw-page-title-main">Seed</span> Embryonic plant enclosed in a protective outer covering

In botany, a seed is a plant embryo and food reserve enclosed in a protective outer covering called a seed coat (testa). More generally, the term "seed" means anything that can be sown, which may include seed and husk or tuber. Seeds are the product of the ripened ovule, after the embryo sac is fertilized by sperm from pollen, forming a zygote. The embryo within a seed develops from the zygote and grows within the mother plant to a certain size before growth is halted.

<span class="mw-page-title-main">Endospore</span> Protective structure formed by bacteria

An endospore is a dormant, tough, and non-reproductive structure produced by some bacteria in the phylum Bacillota. The name "endospore" is suggestive of a spore or seed-like form, but it is not a true spore. It is a stripped-down, dormant form to which the bacterium can reduce itself. Endospore formation is usually triggered by a lack of nutrients, and usually occurs in gram-positive bacteria. In endospore formation, the bacterium divides within its cell wall, and one side then engulfs the other. Endospores enable bacteria to lie dormant for extended periods, even centuries. There are many reports of spores remaining viable over 10,000 years, and revival of spores millions of years old has been claimed. There is one report of viable spores of Bacillus marismortui in salt crystals approximately 25 million years old. When the environment becomes more favorable, the endospore can reactivate itself into a vegetative state. Most types of bacteria cannot change to the endospore form. Examples of bacterial species that can form endospores include Bacillus cereus, Bacillus anthracis, Bacillus thuringiensis, Clostridium botulinum, and Clostridium tetani. Endospore formation is not found among Archaea.

<span class="mw-page-title-main">Spore</span> Unit of reproduction adapted for dispersal and survival in unfavorable conditions

In biology, a spore is a unit of sexual or asexual reproduction that may be adapted for dispersal and for survival, often for extended periods of time, in unfavourable conditions. Spores form part of the life cycles of many plants, algae, fungi and protozoa. They were thought to have appeared as early as the mid-late Ordovician period as an adaptation of early land plants.

<span class="mw-page-title-main">Conifer</span> Group of cone-bearing seed plants

Conifers are a group of cone-bearing seed plants, a subset of gymnosperms. Scientifically, they make up the division Pinophyta, also known as Coniferophyta or Coniferae. The division contains a single extant class, Pinopsida. All extant conifers are perennial woody plants with secondary growth. The great majority are trees, though a few are shrubs. Examples include cedars, Douglas-firs, cypresses, firs, junipers, kauri, larches, pines, hemlocks, redwoods, spruces, and yews. As of 2002, Pinophyta contained seven families, 60 to 65 genera, and more than 600 living species.

<span class="mw-page-title-main">Radicle</span> Radicle forms the future root

In botany, the radicle is the first part of a seedling to emerge from the seed during the process of germination. The radicle is the embryonic root of the plant, and grows downward in the soil. Above the radicle is the embryonic stem or hypocotyl, supporting the cotyledon(s).

<span class="mw-page-title-main">Dormancy</span> State of minimized physical activity of an organism

Dormancy is a period in an organism's life cycle when growth, development, and physical activity are temporarily stopped. This minimizes metabolic activity and therefore helps an organism to conserve energy. Dormancy tends to be closely associated with environmental conditions. Organisms can synchronize entry to a dormant phase with their environment through predictive or consequential means. Predictive dormancy occurs when an organism enters a dormant phase before the onset of adverse conditions. For example, photoperiod and decreasing temperature are used by many plants to predict the onset of winter. Consequential dormancy occurs when organisms enter a dormant phase after adverse conditions have arisen. This is commonly found in areas with an unpredictable climate. While very sudden changes in conditions may lead to a high mortality rate among animals relying on consequential dormancy, its use can be advantageous, as organisms remain active longer and are therefore able to make greater use of available resources.

<span class="mw-page-title-main">Plant hormone</span> Chemical compounds that regulate plant growth and development

Plant hormones are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, including embryogenesis, the regulation of organ size, pathogen defense, stress tolerance and reproductive development. Unlike in animals each plant cell is capable of producing hormones. Went and Thimann coined the term "phytohormone" and used it in the title of their 1937 book.

<span class="mw-page-title-main">Hypocotyl</span> Plant part

The hypocotyl is the stem of a germinating seedling, found below the cotyledons and above the radicle (root).

<span class="mw-page-title-main">Coleoptile</span> Protective sheath in certain plants

Coleoptile is the pointed protective sheath covering the emerging shoot in monocotyledons such as grasses in which few leaf primordia and shoot apex of monocot embryo remain enclosed. The coleoptile protects the first leaf as well as the growing stem in seedlings and eventually, allows the first leaf to emerge. Coleoptiles have two vascular bundles, one on either side. Unlike the flag leaves rolled up within, the pre-emergent coleoptile does not accumulate significant protochlorophyll or carotenoids, and so it is generally very pale. Some preemergent coleoptiles do, however, accumulate purple anthocyanin pigments.

<span class="mw-page-title-main">Endosperm</span> Starchy tissue inside cereals and alike

The endosperm is a tissue produced inside the seeds of most of the flowering plants following double fertilization. It is triploid in most species, which may be auxin-driven. It surrounds the embryo and provides nutrition in the form of starch, though it can also contain oils and protein. This can make endosperm a source of nutrition in animal diet. For example, wheat endosperm is ground into flour for bread, while barley endosperm is the main source of sugars for beer production. Other examples of endosperm that forms the bulk of the edible portion are coconut "meat" and coconut "water", and corn. Some plants, such as orchids, lack endosperm in their seeds.

Plant embryonic development, also plant embryogenesis, is a process that occurs after the fertilization of an ovule to produce a fully developed plant embryo. This is a pertinent stage in the plant life cycle that is followed by dormancy and germination. The zygote produced after fertilization must undergo various cellular divisions and differentiations to become a mature embryo. An end stage embryo has five major components including the shoot apical meristem, hypocotyl, root meristem, root cap, and cotyledons. Unlike the embryonic development in animals, and specifically in humans, plant embryonic development results in an immature form of the plant, lacking most structures like leaves, stems, and reproductive structures. However, both plants and animals including humans, pass through a phylotypic stage that evolved independently and that causes a developmental constraint limiting morphological diversification.

Shade avoidance is a set of responses that plants display when they are subjected to the shade of another plant. It often includes elongation, altered flowering time, increased apical dominance and altered partitioning of resources. This set of responses is collectively called the shade-avoidance syndrome (SAS).

<span class="mw-page-title-main">Seedling</span> Young plant developing out from a seed

A seedling is a young sporophyte developing out of a plant embryo from a seed. Seedling development starts with germination of the seed. A typical young seedling consists of three main parts: the radicle, the hypocotyl, and the cotyledons. The two classes of flowering plants (angiosperms) are distinguished by their numbers of seed leaves: monocotyledons (monocots) have one blade-shaped cotyledon, whereas dicotyledons (dicots) possess two round cotyledons. Gymnosperms are more varied. For example, pine seedlings have up to eight cotyledons. The seedlings of some flowering plants have no cotyledons at all. These are said to be acotyledons.

Seed dormancy is an evolutionary adaptation that prevents seeds from germinating during unsuitable ecological conditions that would typically lead to a low probability of seedling survival. Dormant seeds do not germinate in a specified period of time under a combination of environmental factors that are normally conducive to the germination of non-dormant seeds.

<i>Gibberella fujikuroi</i> Species of fungus

Gibberella fujikuroi is a fungal plant pathogen. It causes bakanae disease in rice seedlings.

This page provides a glossary of plant morphology. Botanists and other biologists who study plant morphology use a number of different terms to classify and identify plant organs and parts that can be observed using no more than a handheld magnifying lens. This page provides help in understanding the numerous other pages describing plants by their various taxa. The accompanying page—Plant morphology—provides an overview of the science of the external form of plants. There is also an alphabetical list: Glossary of botanical terms. In contrast, this page deals with botanical terms in a systematic manner, with some illustrations, and organized by plant anatomy and function in plant physiology.

<span class="mw-page-title-main">Karrikin</span> A plant growth regulator

Karrikins are a group of plant growth regulators found in the smoke of burning plant material. Karrikins help stimulate seed germination and plant development because they mimic a signaling hormone known as strigolactone. Strigolactones are hormones that help increase growth of symbiotic arbuscular mycorrhizal fungi in the soil, which enhances plant growth and leads to an increase in plant branching.

<i>Alternaria brassicicola</i> Species of fungus

Alternaria brassicicola is a fungal necrotrophic plant pathogen that causes black spot disease on a wide range of hosts, particularly in the genus of Brassica, including a number of economically important crops such as cabbage, Chinese cabbage, cauliflower, oilseeds, broccoli and canola. Although mainly known as a significant plant pathogen, it also contributes to various respiratory allergic conditions such as asthma and rhinoconjunctivitis. Despite the presence of mating genes, no sexual reproductive stage has been reported for this fungus. In terms of geography, it is most likely to be found in tropical and sub-tropical regions, but also in places with high rain and humidity such as Poland. It has also been found in Taiwan and Israel. Its main mode of propagation is vegetative. The resulting conidia reside in the soil, air and water. These spores are extremely resilient and can overwinter on crop debris and overwintering herbaceous plants.

<span class="mw-page-title-main">Wisconsin Fast Plants</span> Description of a unique model organism (plant) used internationally for research and teaching

Wisconsin Fast Plants is the registered trademark for a cultivar of Brassica rapa, developed as a rapid life-cycle model organism for research and teaching. Wisconsin Fast Plants are a member of the Brassicaceae family, closely related to the turnip and bok choy. Wisconsin Fast Plants were developed in accordance with an ideotype for an ideal model organism to be used in expediting plant research. Similarly, their rapid life cycle and other model organism characteristics made them easy to grow in large numbers in classrooms. For the last few decades they have been grown in classrooms and laboratories around the world.

References

  1. Forensic Botany. Wiley-Blackwell. 2012. p. 10.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Raven PH, Evert RF, Eichhorn SE (2005). Biology of Plants (7th ed.). New York: W.H. Freeman and Company Publishers. pp.  504–508. ISBN   978-0-7167-1007-3.
  3. Siegel SM, Rosen LA (1962). "Effects of Reduced Oxygen Tension on Germination and Seedling Growth". Physiologia Plantarum. 15 (3): 437–444. doi:10.1111/j.1399-3054.1962.tb08047.x.
  4. Magneschi, Leonardo; Perata, Pierdomenico (25 July 2008). "Rice germination and seedling growth in the absence of oxygen". Annals of Botany. 103 (2): 181–196. doi:10.1093/aob/mcn121. PMC   2707302 . PMID   18660495 . Retrieved 27 March 2022.
  5. Baskin CC, Baskin JM (2014). Variation in Seed Dormancy and Germination within and between Individuals and Populations of a Species. Seeds: Ecology, Biogeography, and, Evolution of Dormancy and Germination. Burlington: Elsevier Science. pp. 5–35. ISBN   9780124166837.
  6. Bewley JD, Black M, Halmer P (2006). The encyclopedia of seeds: science, technology and uses Cabi Series. p. 203. ISBN   978-0-85199-723-0.
  7. Waterworth WM, Bray CM, West CE (June 2015). "The importance of safeguarding genome integrity in germination and seed longevity". Journal of Experimental Botany. 66 (12): 3549–58. doi: 10.1093/jxb/erv080 . PMID   25750428.
  8. Koppen G, Verschaeve L (2001). "The alkaline single-cell gel electrophoresis/comet assay: a way to study DNA repair in radicle cells of germinating Vicia faba". Folia Biologica. 47 (2): 50–4. PMID   11321247.
  9. Waterworth WM, Masnavi G, Bhardwaj RM, Jiang Q, Bray CM, West CE (September 2010). "A plant DNA ligase is an important determinant of seed longevity". The Plant Journal. 63 (5): 848–60. doi: 10.1111/j.1365-313X.2010.04285.x . PMID   20584150.
  10. Waterworth WM, Footitt S, Bray CM, Finch-Savage WE, West CE (August 2016). "DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds". Proceedings of the National Academy of Sciences of the United States of America. 113 (34): 9647–52. Bibcode:2016PNAS..113.9647W. doi: 10.1073/pnas.1608829113 . PMC   5003248 . PMID   27503884.
  11. Sadhu MK (1989). Plant propagation. New Age International. p. 61. ISBN   978-81-224-0065-6.
  12. Martin FW (June 1972). "In vitro measurement of pollen tube growth inhibition". Plant Physiology. 49 (6): 924–5. doi:10.1104/pp.49.6.924. PMC   366081 . PMID   16658085.
  13. Pfahler PL (January 1981). "In vitro germination characteristics of maize pollen to detect biological activity of environmental pollutants". Environmental Health Perspectives. 37: 125–32. doi:10.2307/3429260. JSTOR   3429260. PMC   1568653 . PMID   7460877.
  14. Takayama S, Isogai A (2005). "Self-incompatibility in plants". Annual Review of Plant Biology. 56 (1): 467–89. doi:10.1146/annurev.arplant.56.032604.144249. PMID   15862104. S2CID   1196223.
  15. Roca MG, Davide LC, Davide LM, Mendes-Costa MC, Schwan RF, Wheals AE (November 2004). "Conidial anastomosis fusion between Colletotrichum species". Mycological Research. 108 (Pt 11): 1320–6. CiteSeerX   10.1.1.463.3369 . doi:10.1017/S0953756204000838. PMID   15587065.
  16. Roca MG, Arlt J, Jeffree CE, Read ND (May 2005). "Cell biology of conidial anastomosis tubes in Neurospora crassa". Eukaryotic Cell. 4 (5): 911–9. doi:10.1128/EC.4.5.911-919.2005. PMC   1140100 . PMID   15879525.
  17. J.-M. Ghuysen; R. Hakenbeck (9 February 1994). Bacterial Cell Wall. Elsevier. pp. 167–. ISBN   978-0-08-086087-9.
  18. Eldra Solomon; Linda Berg; Diana W. Martin (15 September 2010). Biology. Cengage Learning. pp. 554–. ISBN   978-0-538-74125-5.
  19. Encyclopedia Britannica (2002). Encyclopedia britannica. Encyclopedia Britannica. p. 580. ISBN   978-0-85229-787-2.
  20. 1 2 Penfield S (September 2017). "Seed dormancy and germination". Current Biology. 27 (17): R874–R878. doi: 10.1016/j.cub.2017.05.050 . PMID   28898656.
  21. de Wit M, Galvão VC, Fankhauser C (April 2016). "Light-Mediated Hormonal Regulation of Plant Growth and Development". Annual Review of Plant Biology. 67: 513–37. doi:10.1146/annurev-arplant-043015-112252. PMID   26905653.
  22. Li R, Jia Y, Yu L, Yang W, Chen Z, Chen H, Hu X (February 2018). "Nitric oxide promotes light-initiated seed germination by repressing PIF1 expression and stabilizing HFR1". Plant Physiology and Biochemistry. 123: 204–212. doi:10.1016/j.plaphy.2017.11.012. PMID   29248678.
  23. Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL (March 2007). "The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy". Plant Physiology. 143 (3): 1173–88. doi:10.1104/pp.106.093435. PMC   1820924 . PMID   17220360.
  24. Shu K, Meng YJ, Shuai HW, Liu WG, Du JB, Liu J, Yang WY (November 2015). "Dormancy and germination: How does the crop seed decide?". Plant Biology. 17 (6): 1104–12. Bibcode:2015PlBio..17.1104S. doi:10.1111/plb.12356. PMID   26095078.

Further reading