Plant cuticle

Last updated
Water beads on the waxy cuticle of kale leaves Kale2.jpg
Water beads on the waxy cuticle of kale leaves

A plant cuticle is a protecting film covering the outermost skin layer (epidermis) of leaves, young shoots and other aerial plant organs (aerial here meaning all plant parts not embedded in soil or other substrate) that have no periderm . The film consists of lipid and hydrocarbon polymers infused with wax, and is synthesized exclusively by the epidermal cells. [1]

Contents

Description

Anatomy of a eudicot leaf Leaf Tissue Structure.svg
Anatomy of a eudicot leaf

The plant cuticle is a layer of lipid polymers impregnated with waxes that is present on the outer surfaces of the primary organs of all vascular land plants. It is also present in the sporophyte generation of hornworts, and in both sporophyte and gametophyte generations of mosses [2] The plant cuticle forms a coherent outer covering of the plant that can be isolated intact by treating plant tissue with enzymes such as pectinase and cellulase.

Composition

The cuticle is composed of an insoluble cuticular membrane impregnated by and covered with soluble waxes. Cutin, a polyester polymer composed of inter-esterified omega hydroxy acids which are cross-linked by ester and epoxide bonds, is the best-known structural component of the cuticular membrane. [3] [4] The cuticle can also contain a non-saponifiable hydrocarbon polymer known as Cutan. [5] The cuticular membrane is impregnated with cuticular waxes [6] and covered with epicuticular waxes, which are mixtures of hydrophobic aliphatic compounds, hydrocarbons with chain lengths typically in the range C16 to C36. [7]

Cuticular wax biosynthesis

Cuticular wax is known to be largely composed of compounds which derive from very-long-chain fatty acids (VLCFAs), such as aldehydes, alcohols, alkanes, ketones, and esters. [8] [9] Also present are other compounds in cuticular wax which are not VLCFA derivatives, such as terpenoids, flavonoids, and sterols, [9] and thus have different synthetic pathways than those VLCFAs.

The first step of the biosynthesis pathway for the formation of cuticular VLCFAs, occurs with the de novo biosynthesis of C16 acyl chains (palmitate) by chloroplasts in the mesophyll, [1] and concludes with the extension of these chains in the endoplasmic reticulum of epidermal cells. [9] An important catalyzer thought to be in this process is the fatty acid elongase (FAE) complex. [8] [9] [10]

To form cuticular wax components, VLCFAs are modified through either two identified pathways, an acyl reduction pathway or a decarbonylation pathway. [9] In the acyl reduction pathway, a reductase converts VLCFAs into primary alcohols, which can then be converted to wax esters through a wax synthase. [9] [10] In the decarbonylation pathway, aldehydes are produced and decarbonylated to form alkanes, and can be subsequently oxidized to form secondary alcohols and ketones. [8] [9] [10] The wax biosynthesis pathway ends with the transportation of the wax components from the endoplasmic reticulum to the epidermal surface. [9]

Functions

The primary function of the plant cuticle is as a water permeability barrier that prevents evaporation of water from the epidermal surface, and also prevents external water and solutes from entering the tissues. [11] In addition to its function as a permeability barrier for water and other molecules (prevent water loss), the micro and nano-structure of the cuticle have specialised surface properties that prevent contamination of plant tissues with external water, dirt and microorganisms. Aerial organs of many plants, such as the leaves of the sacred lotus ( Nelumbo nucifera ) have ultra-hydrophobic and self-cleaning properties that have been described by Barthlott and Neinhuis (1997). [12] The lotus effect has applications in biomimetic technical materials.

Dehydration protection provided by a maternal cuticle improves offspring fitness in the moss Funaria hygrometrica [2] and in the sporophytes of all vascular plants. In angiosperms the cuticle tends to be thicker on the top of the leaf (adaxial surface), but is not always thicker. The leaves of xerophytic plants adapted to drier climates have more equal cuticle thicknesses compared to those of mesophytic plants from wetter climates that do not have a high risk of dehydration from the under sides of their leaves.

"The waxy sheet of cuticle also functions in defense, forming a physical barrier that resists penetration by virus particles, bacterial cells, and the spores and growing filaments of fungi". [13]

Evolution

The plant cuticle is one of a series of innovations, together with stomata, xylem and phloem and intercellular spaces in stem and later leaf mesophyll tissue, that plants evolved more than 450 million years ago during the transition between life in water and life on land. [11] Together, these features enabled upright plant shoots exploring aerial environments to conserve water by internalising the gas exchange surfaces, enclosing them in a waterproof membrane and providing a variable-aperture control mechanism, the stomatal guard cells, which regulate the rates of transpiration and CO2 exchange.

Related Research Articles

<span class="mw-page-title-main">Cell wall</span> Outermost layer of some cells

A cell wall is a structural layer surrounding some types of cells, just outside the cell membrane. It can be tough, flexible, and sometimes rigid. It provides the cell with both structural support and protection, and also acts as a filtering mechanism. Cell walls are absent in many eukaryotes, including animals, but are present in some other ones like fungi, algae and plants, and in most prokaryotes. A major function is to act as pressure vessels, preventing over-expansion of the cell when water enters.

<span class="mw-page-title-main">Cholesterol</span> Sterol biosynthesized by all animal cells

Cholesterol is any of a class of certain organic molecules called lipids. It is a sterol, a type of lipid. Cholesterol is biosynthesized by all animal cells and is an essential structural component of animal cell membranes. When chemically isolated, it is a yellowish crystalline solid.

<span class="mw-page-title-main">Gametophyte</span> Haploid stage in the life cycle of plants and algae

A gametophyte is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore that has one set of chromosomes. The gametophyte is the sexual phase in the life cycle of plants and algae. It develops sex organs that produce gametes, haploid sex cells that participate in fertilization to form a diploid zygote which has a double set of chromosomes. Cell division of the zygote results in a new diploid multicellular organism, the second stage in the life cycle known as the sporophyte. The sporophyte can produce haploid spores by meiosis that on germination produce a new generation of gametophytes.

<span class="mw-page-title-main">Lipid</span> Substance of biological origin that is soluble in nonpolar solvents

Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins, monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing energy, signaling, and acting as structural components of cell membranes. Lipids have applications in the cosmetic and food industries, and in nanotechnology.

<span class="mw-page-title-main">Plant cell</span> Type of eukaryotic cell present in green plants

Plant cells are the cells present in green plants, photosynthetic eukaryotes of the kingdom Plantae. Their distinctive features include primary cell walls containing cellulose, hemicelluloses and pectin, the presence of plastids with the capability to perform photosynthesis and store starch, a large vacuole that regulates turgor pressure, the absence of flagella or centrioles, except in the gametes, and a unique method of cell division involving the formation of a cell plate or phragmoplast that separates the new daughter cells.

<span class="mw-page-title-main">Wax</span> Class of organic compounds which are malleable at room temperature

Waxes are a diverse class of organic compounds that are lipophilic, malleable solids near ambient temperatures. They include higher alkanes and lipids, typically with melting points above about 40 °C (104 °F), melting to give low viscosity liquids. Waxes are insoluble in water but soluble in nonpolar organic solvents such as hexane, benzene and chloroform. Natural waxes of different types are produced by plants and animals and occur in petroleum.

<span class="mw-page-title-main">Suberin</span> Hydrophobic lipid polyester in plant cell walls

Suberin, cutin and lignins are complex, higher plant epidermis and periderm cell-wall macromolecules, forming a protective barrier. Suberin, a complex polyester biopolymer, is lipophilic, and composed of long chain fatty acids called suberin acids, and glycerol. Suberins and lignins are considered covalently linked to lipids and carbohydrates, respectively, and lignin is covalently linked to suberin, and to a lesser extent, to cutin. Suberin is a major constituent of cork, and is named after the cork oak, Quercus suber. Its main function is as a barrier to movement of water and solutes.

Cutin is one of two waxy polymers that are the main components of the plant cuticle, which covers all aerial surfaces of plants, the other being cutan. It is an insoluble substance with waterproof quality. Cutin also harbors cuticular waxes, which assist in cuticle structure. Cutan, the other major cuticle polymer, is much more readily preserved in fossil records. Cutin consists of omega hydroxy acids and their derivatives, which are interlinked via ester bonds, forming a polyester polymer of indeterminate size.

Fatty acid metabolism consists of various metabolic processes involving or closely related to fatty acids, a family of molecules classified within the lipid macronutrient category. These processes can mainly be divided into (1) catabolic processes that generate energy and (2) anabolic processes where they serve as building blocks for other compounds.

<span class="mw-page-title-main">Ceramide</span> Family of waxy lipid molecules

Ceramides are a family of waxy lipid molecules. A ceramide is composed of N-acetylsphingosine and a fatty acid. Ceramides are found in high concentrations within the cell membrane of eukaryotic cells, since they are component lipids that make up sphingomyelin, one of the major lipids in the lipid bilayer. Contrary to previous assumptions that ceramides and other sphingolipids found in cell membrane were purely supporting structural elements, ceramide can participate in a variety of cellular signaling: examples include regulating differentiation, proliferation, and programmed cell death (PCD) of cells.

<span class="mw-page-title-main">Appressorium</span>

An appressorium is a specialized cell typical of many fungal plant pathogens that is used to infect host plants. It is a flattened, hyphal "pressing" organ, from which a minute infection peg grows and enters the host, using turgor pressure capable of punching through even Mylar.

<span class="mw-page-title-main">Epidermis (botany)</span> Layer of cells that covers leaves, flowers, roots of plants

The epidermis is a single layer of cells that covers the leaves, flowers, roots and stems of plants. It forms a boundary between the plant and the external environment. The epidermis serves several functions: it protects against water loss, regulates gas exchange, secretes metabolic compounds, and absorbs water and mineral nutrients. The epidermis of most leaves shows dorsoventral anatomy: the upper (adaxial) and lower (abaxial) surfaces have somewhat different construction and may serve different functions. Woody stems and some other stem structures such as potato tubers produce a secondary covering called the periderm that replaces the epidermis as the protective covering.

Epicuticular wax is a waxy coating which covers the outer surface of the plant cuticle in land plants. It may form a whitish film or bloom on leaves, fruits and other plant organs. Chemically, it consists of hydrophobic organic compounds, mainly straight-chain aliphatic hydrocarbons with or without a variety of substituted functional groups. The main functions of the epicuticular wax are to decrease surface wetting and moisture loss. Other functions include reflection of ultraviolet light, assisting in the formation of an ultra-hydrophobic and self-cleaning surface and acting as an anti-climb surface.

Lipid metabolism is the synthesis and degradation of lipids in cells, involving the breakdown and storage of fats for energy and the synthesis of structural and functional lipids, such as those involved in the construction of cell membranes. In animals, these fats are obtained from food and are synthesized by the liver. Lipogenesis is the process of synthesizing these fats. The majority of lipids found in the human body from ingesting food are triglycerides and cholesterol. Other types of lipids found in the body are fatty acids and membrane lipids. Lipid metabolism is often considered as the digestion and absorption process of dietary fat; however, there are two sources of fats that organisms can use to obtain energy: from consumed dietary fats and from stored fat. Vertebrates use both sources of fat to produce energy for organs such as the heart to function. Since lipids are hydrophobic molecules, they need to be solubilized before their metabolism can begin. Lipid metabolism often begins with hydrolysis, which occurs with the help of various enzymes in the digestive system. Lipid metabolism also occurs in plants, though the processes differ in some ways when compared to animals. The second step after the hydrolysis is the absorption of the fatty acids into the epithelial cells of the intestinal wall. In the epithelial cells, fatty acids are packaged and transported to the rest of the body.

<span class="mw-page-title-main">Cutinase</span>

The enzyme cutinase is a member of the hydrolase family. It catalyzes the following reaction:

In enzymology, a long-chain-alcohol O-fatty-acyltransferase is an enzyme that catalyzes the chemical reaction

A xerophyte is a species of plant that has adaptations to survive in an environment with little liquid water. Examples are typically desert regions like the Sahara, and places in the Alps or the Arctic. Popular examples of xerophytes are cacti, pineapple and some Gymnosperm plants.

A cuticle, or cuticula, is any of a variety of tough but flexible, non-mineral outer coverings of an organism, or parts of an organism, that provide protection. Various types of "cuticle" are non-homologous, differing in their origin, structure, function, and chemical composition.

Omega hydroxy acids are a class of naturally occurring straight-chain aliphatic organic acids n carbon atoms long with a carboxyl group at position 1, and a hydroxyl at terminal position n where n > 3. The C16 and C18 omega hydroxy acids 16-hydroxy palmitic acid and 18-hydroxy stearic acid are key monomers of cutin in the plant cuticle. The polymer cutin is formed by interesterification of omega hydroxy acids and derivatives of them that are substituted in mid-chain, such as 10,16-dihydroxy palmitic acid. Only the epidermal cells of plants synthesize cutin.

<span class="mw-page-title-main">Russeting</span>

Russeting or russetting is an abnormality of fruit skin which manifests in russet-colored (brownish) patches that are rougher than healthy skin. It is a common feature in apples and pears. Russeting is typically an undesirable trait, which reduces the storage life of fruits and makes their appearance unattractive to consumers, although some cultivars, so-called russet apples, are appreciated for the feature.

References

  1. 1 2 Kolattukudy, PE (1996) Biosynthetic pathways of cutin and waxes, and their sensitivity to environmental stresses. In: Plant Cuticles. Ed. by G. Kerstiens, BIOS Scientific publishers Ltd., Oxford, pp 83-108
  2. 1 2 Budke, J.M.; Goffinet, B.; Jones, C.S. (2013). "Dehydration protection provided by a maternal cuticle improves offspring fitness in the moss Funaria hygrometrica". Annals of Botany. 111 (5): 781–789. doi: 10.1093/aob/mct033 . PMC   3631323 . PMID   23471009.
  3. Holloway, PJ (1982) The chemical constitution of plant cutins. In: Cutler, DF, Alvin, KL and Price, CE The Plant Cuticle. Academic Press, pp. 45-85
  4. Stark, RE and Tian, S (2006) The cutin biopolymer matrix. In: Riederer, M & Müller, C (2006) Biology of the Plant Cuticle. Blackwell Publishing
  5. Tegelaar, EW, et al. (1989) Scope and limitations of several pyrolysis methods in the structural elucidation of a macromolecular plant constituent in the leaf cuticle of Agave americana L., Journal of Analytical and Applied Pyrolysis, 15, 29-54
  6. Jetter, R, Kunst, L & Samuels, AL (2006) Composition of plant cuticular waxes. In: Riederer, M & Müller, C (2006) Biology of the Plant Cuticle. Blackwell Publishing, 145-181
  7. Baker, EA (1982) Chemistry and morphology of plant epicuticular waxes. In: Cutler, DF, Alvin, KL and Price, CE The Plant Cuticle. Academic Press, 139-165
  8. 1 2 3 Yeats, Trevor H.; Rose, Jocelyn K.C. (September 2013). "The Formation and Function of Plant Cuticles". Plant Physiology. 163 (1): 5–20. doi:10.1104/pp.113.222737. ISSN   0032-0889. PMC   3762664 . PMID   23893170.
  9. 1 2 3 4 5 6 7 8 Kunst, L; Samuels, A. L (2003-01-01). "Biosynthesis and secretion of plant cuticular wax". Progress in Lipid Research. 42 (1): 51–80. doi:10.1016/S0163-7827(02)00045-0. ISSN   0163-7827. PMID   12467640.
  10. 1 2 3 Suh, Mi Chung; Kim, Hae Jin; Kim, Hyojin; Go, Young Sam (2014-04-01). "Arabidopsis Cuticular Wax Biosynthesis Is Negatively Regulated by the DEWAX Gene Encoding an AP2/ERF-Type Transcription Factor". The Plant Cell. 26 (4): 1666–1680. doi:10.1105/tpc.114.123307. ISSN   1040-4651. PMC   4036578 . PMID   24692420.
  11. 1 2 Raven, J.A. (1977). "The evolution of vascular land plants in relation to supracellular transport processes". Advances in Botanical Research. 5: 153–219. doi:10.1016/S0065-2296(08)60361-4. ISBN   9780120059058.
  12. Barthlott, W.; Neinhuis, C (1997). "Purity of the sacred lotus, or escape from contamination in biological surfaces". Planta. 202: 1–8. doi:10.1007/s004250050096. S2CID   37872229.
  13. Freeman, S. (2002). Biological Science. New Jersey: Prentice-Hall, Inc. ISBN   978-0130819239.