Glacial landform

Last updated
Antique postcard shows rocks scarred by glacial erosion SunapeeNH.jpg
Antique postcard shows rocks scarred by glacial erosion
Yosemite Valley from an airplane, showing the "U" shape YosemiteFromPlane.JPG
Yosemite Valley from an airplane, showing the "U" shape
Glacially plucked granitic bedrock near Mariehamn, Aland PluckedGraniteAlandIslands.JPG
Glacially plucked granitic bedrock near Mariehamn, Åland
Kamenitsa Peak erosion in Pirin mountain, Bulgaria Kamenitsa Pirin IMG 8526.jpg
Kamenitsa Peak erosion in Pirin mountain, Bulgaria

Glacial landforms are landforms created by the action of glaciers. Most of today's glacial landforms were created by the movement of large ice sheets during the Quaternary glaciations. Some areas, like Fennoscandia and the southern Andes, have extensive occurrences of glacial landforms; other areas, such as the Sahara, display rare and very old fossil glacial landforms.

Contents

Erosional landforms

Erosional landforms Arranque glaciar-en.svg
Erosional landforms

As the glaciers expand, due to their accumulating weight of snow and ice they crush, abrade, and scour surfaces such as rocks and bedrock. The resulting erosional landforms include striations, cirques, glacial horns, arêtes, trim lines, U-shaped valleys, roches moutonnées, overdeepenings and hanging valleys.

Depositional landforms

Depositional landforms Receding glacier-en.svg
Depositional landforms

Later, when the glaciers retreated leaving behind their freight of crushed rock and sand (glacial drift), they created characteristic depositional landforms. Depositional landforms are often made of glacial till, which is composed of unsorted sediments (some quite large, others small) that were eroded, carried, and deposited by the glacier some distance away from their original rock source. [1] [3] Examples include glacial moraines, eskers, and kames. Drumlins and ribbed moraines are also landforms left behind by retreating glaciers. Many depositional landforms result from sediment deposited or reshaped by meltwater and are referred to as fluvioglacial landforms. Fluvioglacial deposits differ from glacial till in that they were deposited by means of water, rather than the glacial itself, and the sediments are thus also more size sorted than glacial till is. The stone walls of New England contain many glacial erratics, rocks that were dragged by a glacier many miles from their bedrock origin.

Glacial lakes and ponds

Lakes and ponds may also be caused by glacial movement. Kettle lakes form when a retreating glacier leaves behind an underground or surface chunk of ice that later melts to form a depression containing water. Moraine-dammed lakes occur when glacial debris dam a stream (or snow runoff). Jackson Lake and Jenny Lake in Grand Teton National Park are examples of moraine-dammed lakes, though Jackson Lake is enhanced by a man-made dam.

Ice features

Apart from the landforms left behind by glaciers, glaciers themselves are striking features of the terrain, particularly in the polar regions of Earth. Notable examples include valley glaciers where glacial flow is restricted by the valley walls, crevasses in the upper section of glacial ice, and icefalls—the ice equivalent of waterfalls.

Disputed origin

The glacial origin of some landforms has been questioned:

Erling Lindström has advanced the thesis that roches moutonnées may not be entirely glacial landforms taking most of their shape before glaciation. Jointing that contribute to the shape typically predate glaciation and roche moutonnée-like forms can be found in tropical areas such as East Africa and Australia. Further at Ivö Lake in Sweden weathered rock surfaces exposed by kaolin mining resemble roche moutonnée. [4]

The idea of elevated flat surfaces being shaped by glaciation—the glacial buzzsaw effect—has been rejected by various scholars. In the case of Norway the elevated paleic surface has been proposed to have been shaped by the glacial buzzsaw effect. However, this proposal is difficult to reconcile with the fact that the paleic surface consist of a series of steps at different levels. [5] Further glacial cirques, that in the buzzsaw hypothesis contribute to belevel the landscape, are not associated to any paleosurface levels of the composite paleic surface, nor does the modern equilibrium line altitude (ELA) or the Last Glacial Maximum ELA match any given level of the paleic surface. [6] The elevated plains of West Greenland are also unrelated to any glacial buzzsaw effect. [5]

The Gulf of Bothnia and Hudson Bay, two large depressions at the centre of former ice sheets, are known to be more the result of tectonics than of any weak glacial erosion. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Glacier</span> Persistent body of ice that is moving under its own weight

A glacier is a persistent body of dense ice that is constantly moving under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as crevasses and seracs, as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques, moraines, or fjords. Although a glacier may flow into a body of water, it forms only on land and is distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.

<span class="mw-page-title-main">Drumlin</span> Elongated hill formed by glacial action

A drumlin, from the Irish word droimnín, first recorded in 1833, in the classical sense is an elongated hill in the shape of an inverted spoon or half-buried egg formed by glacial ice acting on underlying unconsolidated till or ground moraine. Assemblages of drumlins are referred to as fields or swarms; they can create a landscape which is often described as having a 'basket of eggs topography'.

<span class="mw-page-title-main">Moraine</span> Glacially formed accumulation of debris

A moraine is any accumulation of unconsolidated debris, sometimes referred to as glacial till, that occurs in both currently and formerly glaciated regions, and that has been previously carried along by a glacier or ice sheet. It may consist of partly rounded particles ranging in size from boulders down to gravel and sand, in a groundmass of finely-divided clayey material sometimes called glacial flour. Lateral moraines are those formed at the side of the ice flow, and terminal moraines were formed at the foot, marking the maximum advance of the glacier. Other types of moraine include ground moraines and medial moraines.

<span class="mw-page-title-main">Till</span> Unsorted glacial sediment

Till or glacial till is unsorted glacial sediment.

<span class="mw-page-title-main">Glaciology</span> Scientific study of ice and natural phenomena involving ice

Glaciology is the scientific study of glaciers, or more generally ice and natural phenomena that involve ice.

Landforms are categorized by characteristic physical attributes such as their creating process, shape, elevation, slope, orientation, rock exposure, and soil type.

<span class="mw-page-title-main">Outwash plain</span> Plain formed from glacier sediment transported by meltwater

An outwash plain, also called a sandur, sandr or sandar, is a plain formed of glaciofluvial deposits due to meltwater outwash at the terminus of a glacier. As it flows, the glacier grinds the underlying rock surface and carries the debris along. The meltwater at the snout of the glacier deposits its load of sediment over the outwash plain, with larger boulders being deposited near the terminal moraine, and smaller particles travelling further before being deposited. Sandurs are common in Iceland where geothermal activity accelerates the melting of ice flows and the deposition of sediment by meltwater.

<span class="mw-page-title-main">Cirque</span> An amphitheatre-like valley formed by glacial erosion

A cirque is an amphitheatre-like valley formed by glacial erosion. Alternative names for this landform are corrie and cwm. A cirque may also be a similarly shaped landform arising from fluvial erosion.

<span class="mw-page-title-main">Glacial motion</span> Geological phenomenon

Glacial motion is the motion of glaciers, which can be likened to rivers of ice. It has played an important role in sculpting many landscapes. Most lakes in the world occupy basins scoured out by glaciers. Glacial motion can be fast or slow, but is typically around 25 centimetres per day (9.8 in/d).

<span class="mw-page-title-main">Glacial lake</span> Lake formed by a melted glacier

A glacial lake is a body of water with origins from glacier activity. They are formed when a glacier erodes the land and then melts, filling the depression created by the glacier.

The Oak Ridges Moraine is a geological landform that runs east-west across south central Ontario, Canada. It developed about 12,000 years ago, during the Wisconsin glaciation in North America. A complex ridge of sedimentary material, the moraine is known to have partially developed under water. The Niagara Escarpment played a key role in forming the moraine in that it acted as a dam for glacial meltwater trapped between it and two ice lobes.

<span class="mw-page-title-main">Terminal moraine</span> Type of moraine that forms at the terminal of a glacier

A terminal moraine, also called an end moraine, is a type of moraine that forms at the terminal (edge) of a glacier, marking its maximum advance. At this point, debris that has accumulated by plucking and abrasion, has been pushed by the front edge of the ice, is driven no further and instead is deposited in an unsorted pile of sediment. Because the glacier acts very much like a conveyor belt, the longer it stays in one place, the greater the amount of material that will be deposited. The moraine is left as the marking point of the terminal extent of the ice.

<span class="mw-page-title-main">Roche moutonnée</span> Rock formation created by the passing of a glacier

In glaciology, a roche moutonnée is a rock formation created by the passing of a glacier. The passage of glacial ice over underlying bedrock often results in asymmetric erosional forms as a result of abrasion on the "stoss" (upstream) side of the rock and plucking on the "lee" (downstream) side. Some geologists limit the term to features on scales of a metre to several hundred metres and refer to larger features as crag and tail.

<span class="mw-page-title-main">Plucking (glaciation)</span> Glacial erosion of bedrock

Plucking, also referred to as quarrying, is a glacial phenomenon that is responsible for the weathering and erosion of pieces of bedrock, especially large "joint blocks". This occurs in a type of glacier called a "valley glacier". As a glacier moves down a valley, friction causes the basal ice of the glacier to melt and infiltrate joints (cracks) in the bedrock. The freezing and thawing action of the ice enlarges, widens, or causes further cracks in the bedrock as it changes volume across the ice/water phase transition, gradually loosening the rock between the joints. This produces large pieces of rock called joint blocks. Eventually these joint blocks come loose and become trapped in the glacier.

<span class="mw-page-title-main">Tunnel valley</span> Glacial-formed geographic feature

A tunnel valley is a U-shaped valley originally cut under the glacial ice near the margin of continental ice sheets such as that now covering Antarctica and formerly covering portions of all continents during past glacial ages. They can be as long as 100 km (62 mi), 4 km (2.5 mi) wide, and 400 m (1,300 ft) deep.

<span class="mw-page-title-main">U-shaped valley</span> Valleys formed by glacial scouring

U-shaped valleys, also called trough valleys or glacial troughs, are formed by the process of glaciation. They are characteristic of mountain glaciation in particular. They have a characteristic U shape in cross-section, with steep, straight sides and a flat or rounded bottom. Glaciated valleys are formed when a glacier travels across and down a slope, carving the valley by the action of scouring. When the ice recedes or thaws, the valley remains, often littered with small boulders that were transported within the ice, called glacial till or glacial erratic.

A subaqueous fan is a fan-shaped deposit formed beneath water, and are commonly related to glaciers and crater lakes.

Fluvioglacial landforms are those that result from the associated erosion and deposition of sediments caused by glacial meltwater. These landforms may also be referred to as glaciofluvial in nature. Glaciers contain suspended sediment loads, much of which is initially picked up from the underlying landmass. Landforms are shaped by glacial erosion through processes such as glacial quarrying, abrasion, and meltwater. Glacial meltwater contributes to the erosion of bedrock through both mechanical and chemical processes.

The glacial series refers to a particular sequence of landforms in Central Europe that were formed during the Pleistocene glaciation beneath the ice sheets, along their margins and on their forelands during each glacial advance.

<span class="mw-page-title-main">Edaga Arbi Glacials</span> Palaeozoic geological formation in Africa

The Edaga Arbi Glacials are a Palaeozoic geological formation in Tigray and in Eritrea. The matrix is composed of grey, black and purple clays, that contains rock fragments up to 6 metres across. Pollen dating yields a Late Carboniferous to Early Permian age.

References

  1. 1 2 3 4 Spellman, Frank (2009). Geology for Nongeologists. Lanham, Maryland: Government Institutes. pp. 123–125. ISBN   9781591919445.
  2. Crosby, Benjamin; Whipple, Kelin; Gasparini, Nicole; Wobus, Cameron (August 2007). "Formation of Fluvial Hanging Valleys: Theory and Simulation". Journal of Geophysical Research: Earth Surface. 112 (F3) via AGU.
  3. 1 2 Eyles, Nick (August 2006). "The Role of Meltwater in Glacial Processes". Sedimentary Geology. 190 (1–4): 257–268 via Elsevier Science Direct.
  4. Lindström, Erling (1988). "Are roches moutonnées mainly preglacial forms?". Geografiska Annaler . 70 A (4): 323–331. doi:10.2307/521265. JSTOR   521265.
  5. 1 2 Lidmar-Bergström, Karna; Bonow, Johan M.; Japsen, Peter (2013). "Stratigraphic Landscape Analysis and geomorphological paradigms: Scandinavia as an example of Phanerozoic uplift and subsidence". Global and Planetary Change . 100: 153–171. Bibcode:2013GPC...100..153L. doi:10.1016/j.gloplacha.2012.10.015.
  6. Hall, Adrian M.; Ebert, Karin; Kleman, Johan; Nesje, Atle; Ottesen, Dag (2013). "Selective glacial erosion on the Norwegian passive margin". Geology. 41 (12): 1203–1206. Bibcode:2013Geo....41.1203H. doi:10.1130/g34806.1.
  7. Lidmar-Bergström, Karna (1997). "A long-term perspective on glacial erosion". Earth Surface Processes and Landforms . 22 (3): 297–306. Bibcode:1997ESPL...22..297L. doi:10.1002/(SICI)1096-9837(199703)22:3<297::AID-ESP758>3.0.CO;2-R.