Neurophysin II

Last updated
arginine vasopressin (neurophysin II, antidiuretic hormone, diabetes insipidus, neurohypophyseal)
2bn2.jpg
neurophysin II, Bos taurus
Identifiers
SymbolAVP
Alt. symbolsARVP
NCBI gene 551
HGNC 894
OMIM 192340
RefSeq NM_000490
UniProt P01185
Other data
Locus Chr. 20 p13
Search for
Structures Swiss-model
Domains InterPro

Neurophysin II is a carrier protein with a size of 19,687.3 Da and is made up of a dimer of two virtually identical chains of amino acids. Neurophysin II is a cleavage product (formed by splitting of a compound molecule into a simpler one) of the AVP gene. It is a neurohypophysial hormone that is transported in vesicles with vasopressin, the other cleavage product, along axons, from magnocellular neurons of the hypothalamus to the posterior lobe of the pituitary. Although it is stored in neurosecretory granules with vasopressin and released with vasopressin into the bloodstream, its biological action is unclear. Neurophysin II is also known as a stimulator of prolactin secretion.

Contents

Function

Neurophysin II is a carrier protein for vasopressin (ADH). It is produced in the cell bodies of the paraventricular and supraoptic nuclei and transported to its site of release in the axon terminals of the posterior pituitary. Oxytocin, a hormone similar in structure to vasopressin, is analogously bound and transported by neurophysin I. Both hormones are nine residues long, and only differ by the amino acids at positions three and eight. Oxytocin possesses Ile-3 whereas vasopressin possesses Phe-3. Both Ile and Phe are hydrophobic amino acids and undergo analogous binding to neurophysins.

Structure

Neurophysin II is a dimer with each monomer consisting of two anti-parallel β-sheets. Each chain is identical with the exception of a single amino acid substitution (Chain 1 contains Lys-18, whereas chain 2 contains Ala-18). Each chain is 95 amino acids in length and binds a single oxytocin molecule. The amino acid sequence of Neurophysin II is:

NH2 - Ala - Met - Ser - Asp - Leu - Glu - Leu - Arg - Gln - Cys - Leu - Pro - Cys - Gly - Pro - Gly - Gly - Lys - Gly - Arg - Cys - Phe - Gly - Pro - Ser - Ile - Cys - Cys - Ala - Asp - Glu - Leu - Gly - Cys - Phe - Val - Gly - Thr - Ala - Glu - Ala - Leu - Arg - Cys - Gln - Glu - Glu - Asn - Tyr - Leu - Pro - Ser - Pro - Cys - Gln - Ser - Gly - Gln - Lys - Ala - Cys - Gly - Ser - Gly - Gly - Arg - Cys - Ala - Ala - Phe - Gly - Val - Cys - Cys - Asn - Asp - Glu - Ser - Cys - Val - Thr - Glu - Pro - Glu - Cys - Arg - Glu - Gly - Phe - His - Arg - Arg - Ala - OH

(Disulfide - bridge: - 10-54; - 13-27; - 21-44; - 28-34; - 61-73; - 67-85; - 74-79)

Clinical significance

Point mutations in the genes that encode arginine vasopressin and or its carrier protein neurophysin II underlie most cases of the familial, autosomal dominant disorder neurohypophyseal diabetes insipidus [1] (also called hereditary hypothalamic diabetes insipidus). This condition results from insufficient ADH release into systemic circulation.

See also

Related Research Articles

Neurophysin I is a carrier protein with a size of 10 KDa and contains 90 to 97 amino acids. It is a cleavage product of preprooxyphysin. It is a neurohypophysial hormone that is transported in vesicles with oxytocin, the other cleavage product, along axons, from magnocellular neurons of the hypothalamus to the posterior lobe of the pituitary. Although it is stored in neurosecretory granules with oxytocin and released with oxytocin, its biological action is unclear.

Growth hormone–releasing hormone (GHRH), also known as somatocrinin or by several other names in its endogenous forms and as somatorelin (INN) in its pharmaceutical form, is a releasing hormone of growth hormone (GH). It is a 44-amino acid peptide hormone produced in the arcuate nucleus of the hypothalamus.

<span class="mw-page-title-main">Vasotocin</span> Chemical compound

Vasotocin is an oligopeptide homologous to oxytocin and vasopressin found in all non-mammalian vertebrates and possibly in mammals during the fetal stage of development. Arginine vasotocin (AVT), a hormone produced by neurosecretory cells within the posterior pituitary gland (neurohypophysis) of the brain, is a major endocrine regulator of water balance and osmotic homoeostasis and is involved in social and sexual behavior in non-mammalian vertebrates. In mammals, it appears to have biological properties similar to those of oxytocin and vasopressin. It has been found to have effects on the regulation of REM sleep. Evidence for the existence of endogenous vasotocin in mammals is limited and no mammalian gene encoding vasotocin has been confirmed.

omega-Grammotoxin SIA (ω-grammotoxin SIA) is a protein toxin that inhibits P, Q, and N voltage-gated calcium channels (Ca2+ channels) in neurons.

<span class="mw-page-title-main">Agitoxin</span>

Agitoxin is a toxin found in the venom of the scorpion Leiurus quinquestriatus hebraeus. Other toxins found in this species include charybdotoxin (CTX). CTX is a close homologue of Agitoxin.

Tazarotene-induced gene-1 (TIG1) is a protein which has been implicated as a putative tumor suppressor. It is structurally similar to the protein latexin, which has also been shown to demonstrate some tumor suppression activity. TIG1 is thought to be a transmembrane protein, and its mechanism of tumor suppression is largely unknown.

Taspoglutide is a former experimental drug, a glucagon-like peptide-1 agonist, that was under investigation for treatment of type 2 diabetes and being codeveloped by Ipsen and Roche.

Modified GRF (1-29) often abbreviated as mod GRF (1-29), originally known as tetrasubstituted GRF (1-29), is a term used to identify a 29 amino acid peptide analogue of growth-hormone-releasing hormone (GHRH), a releasing hormone of growth hormone (GH). It is a modified version of the shortest fully functional fragment of GHRH, often referred to as growth hormone releasing factor (1-29), and also known by its standardized name, sermorelin.

The pterobranchia mitochondrial code is a genetic code used by the mitochondrial genome of Rhabdopleura compacta (Pterobranchia). The Pterobranchia are one of the two groups in the Hemichordata which together with the Echinodermata and Chordata form the three major lineages of deuterostomes. AUA translates to isoleucine in Rhabdopleura as it does in the Echinodermata and Enteropneusta while AUA encodes methionine in the Chordata. The assignment of AGG to lysine is not found elsewhere in deuterostome mitochondria but it occurs in some taxa of Arthropoda. This code shares with many other mitochondrial codes the reassignment of the UGA STOP to tryptophan, and AGG and AGA to an amino acid other than arginine. The initiation codons in Rhabdopleura compacta are ATG and GTG.

The yeast mitochondrial code is a genetic code used by the mitochondrial genome of yeasts, notably Saccharomyces cerevisiae, Candida glabrata, Hansenula saturnus, and Kluyveromyces thermotolerans.

Agelenin, also called U1-agatoxin-Aop1a, is an antagonist of the presynaptic P-type calcium channel in insects. This neurotoxic peptide consists of 35 amino acids and can be isolated from the venom of the spider Allagelena opulenta.

Centruroides suffusus suffusus toxin II (CssII) is a scorpion β-toxin from the venom of the scorpion Centruroides suffusus suffusus. CssII primarily affects voltage-gated sodium channels by causing a hyperpolarizing shift of voltage dependence, a reduction in peak transient current, and the occurrence of resurgent currents.

The euplotid nuclear code is the genetic code used by Euplotidae. The euplotid code is a socalled "symmetrical code", which results from the symmetrical distribution of the codons. This symmetry allows for arythmic exploration of the codon distribution. In 2013, shCherbak and Makukov, reported that "the patterns are shown to match the criteria of an intelligent signal."

The candidate division SR1 and gracilibacteria code is used in two groups of uncultivated bacteria found in marine and fresh-water environments and in the intestines and oral cavities of mammals among others. The difference to the standard and the bacterial code is that UGA represents an additional glycine codon and does not code for termination.

The Blepharisma nuclear code is a genetic code found in the nuclei of Blepharisma.

The Thraustochytrium mitochondrial code is a genetic code found in the mitochondria of the labyrinthulid protist Thraustochytrium aureum. The mitochondrial genome was sequenced by the Organelle Genome Megasequencing Program.

The pachysolen tannophilus nuclear code is a genetic code found in the ascomycete fungus Pachysolen tannophilus.

The Mesodinium nuclear code is a genetic code used by the nuclear genome of the ciliates Mesodinium and Myrionecta.

The peritrich nuclear code is a genetic code used by the nuclear genome of the peritrich ciliates Vorticella and Opisthonecta.

DKK-SP1 is one of the many neurotoxins present in the scorpion Mesobuthus martensii. This toxin inhibits the voltage-gated sodium channel Nav1.8.

References

  1. Christensen JH, Siggaard C, Corydon TJ, et al. (January 2004). "Six novel mutations in the arginine vasopressin gene in 15 kindreds with autosomal dominant familial neurohypophyseal diabetes insipidus give further insight into the pathogenesis". Eur. J. Hum. Genet. 12 (1): 44–51. doi: 10.1038/sj.ejhg.5201086 . PMID   14673472.