R* rule (ecology)

Last updated

The R* rule (also called the resource-ratio hypothesis) is a hypothesis in community ecology that attempts to predict which species will become dominant as the result of competition for resources. [1] The hypothesis was formulated by American ecologist David Tilman. [2] It predicts that if multiple species are competing for a single limiting resource, then whichever species can survive at the lowest equilibrium resource level (i.e., the R*) can outcompete all other species. [1] If two species are competing for two resources, then coexistence is only possible if each species has a lower R* on one of the resources. [1] For example, two phytoplankton species may be able to coexist if one is more limited by nitrogen, and the other is more limited by phosphorus.

Contents

A large number of experimental studies have attempted to verify the predictions of the R* rule. Many studies have shown that when multiple plankton are grown together, the species with the lowest R* will dominate, or coexist if they are limited by multiple resources. [3] There are fewer tests of the R* rule in communities of larger organisms, in part because of the difficulty of creating a situation in which only a single resource is limiting. [3] [4] However, some studies have used the R* rule with multiple resources to predict which groups of plants will be able to coexist. [5]

Mathematical Derivation

Consider a community with multiple species. We will assume that each species competes for a single resource, and ignore the effects of interference or apparent competition. Each population increases by consuming resources, and declines when resources are too scarce. For example, we could model their population dynamics as

where Nj is the density of species j, R is the density of the resource, a is the rate at which species j eats the resource, d is species js death rate, and r is the rate at which resources grow when not consumed. It is easy to show that when species j is at equilibrium by itself (i.e., dNj/dt = 0), that the equilibrium resource density, R*j, is

When R > R*j, species j's population will increase; when R is less than R*j, species js population will decline. Because of this, the species with the lowest R* will eventually dominate. Consider the two species case, where R*1 < R*2. When species 2 is at equilibrium, R = R*2, and species 1's population will be increasing. When species 1 is at equilibrium, R = R*1, and species 2's population will be decreasing. [1]

This method has been extended to analyze more complex models, such as species with a Type II functional response. Under many additional circumstances, the above result still holds: the species who can survive at the lowest resource levels will be the competitive dominant. [3]

Relation to the CSR triangle theory

Understanding the differences between the R* theory and its major alternative the CSR triangle theory is a major goal in community ecology for many years. [6] [7] Unlike the R* theory, the CSR theory predicts that competitive ability is determined by relative growth rate and other size related traits. While some experiments supported the R* predictions, other supported the CSR predictions. [6] The different predictions stem from different assumptions on the size asymmetry of the competition. The R* theory assumes that competition is size symmetric (i.e. resource exploitation is proportional to individual biomass), the CSR theory assumes that competition is size-asymmetric (i.e. large individuals exploit disproportional higher amounts of resources compared with smaller individuals). [8]

Related Research Articles

<span class="mw-page-title-main">Theoretical ecology</span>

Theoretical ecology is the scientific discipline devoted to the study of ecological systems using theoretical methods such as simple conceptual models, mathematical models, computational simulations, and advanced data analysis. Effective models improve understanding of the natural world by revealing how the dynamics of species populations are often based on fundamental biological conditions and processes. Further, the field aims to unify a diverse range of empirical observations by assuming that common, mechanistic processes generate observable phenomena across species and ecological environments. Based on biologically realistic assumptions, theoretical ecologists are able to uncover novel, non-intuitive insights about natural processes. Theoretical results are often verified by empirical and observational studies, revealing the power of theoretical methods in both predicting and understanding the noisy, diverse biological world.

<span class="mw-page-title-main">Ecological niche</span> Fit of a species living under specific environmental conditions

In ecology, a niche is the match of a species to a specific environmental condition. It describes how an organism or population responds to the distribution of resources and competitors and how it in turn alters those same factors. "The type and number of variables comprising the dimensions of an environmental niche vary from one species to another [and] the relative importance of particular environmental variables for a species may vary according to the geographic and biotic contexts".

<span class="mw-page-title-main">Competitive exclusion principle</span> Ecology proposition

In ecology, the competitive exclusion principle, sometimes referred to as Gause's law, is a proposition that two species which compete for the same limited resource cannot coexist at constant population values. When one species has even the slightest advantage over another, the one with the advantage will dominate in the long term. This leads either to the extinction of the weaker competitor or to an evolutionary or behavioral shift toward a different ecological niche. The principle has been paraphrased in the maxim "complete competitors can not coexist".

The metabolic theory of ecology (MTE) is the ecological component of the more general Metabolic Scaling Theory and Kleiber's law. It posits that the metabolic rate of organisms is the fundamental biological rate that governs most observed patterns in ecology. MTE is part of a larger set of theory known as metabolic scaling theory that attempts to provide a unified theory for the importance of metabolism in driving pattern and process in biology from the level of cells all the way to the biosphere.

The diversity of species and genes in ecological communities affects the functioning of these communities. These ecological effects of biodiversity in turn are affected by both climate change through enhanced greenhouse gases, aerosols and loss of land cover, and biological diversity, causing a rapid loss of biodiversity and extinctions of species and local populations. The current rate of extinction is sometimes considered a mass extinction, with current species extinction rates on the order of 100 to 1000 times as high as in the past.

<span class="mw-page-title-main">Competition (biology)</span> Interaction where the fitness of one organism is lowered by the presence of another organism

Competition is an interaction between organisms or species in which both require a resource that is in limited supply. Competition lowers the fitness of both organisms involved since the presence of one of the organisms always reduces the amount of the resource available to the other.

In ecology, an ideal free distribution (IFD) is a theoretical way in which a population's individuals distribute themselves among several patches of resources within their environment, in order to minimize resource competition and maximize fitness. The theory states that the number of individual animals that will aggregate in various patches is proportional to the amount of resources available in each. For example, if patch A contains twice as many resources as patch B, there will be twice as many individuals foraging in patch A as in patch B.

<span class="mw-page-title-main">Interspecific competition</span> Form of competition

Interspecific competition, in ecology, is a form of competition in which individuals of different species compete for the same resources in an ecosystem. This can be contrasted with mutualism, a type of symbiosis. Competition between members of the same species is called intraspecific competition.

<span class="mw-page-title-main">G. David Tilman</span> American ecologist (born 1949)

George David Tilman, ForMemRS, is an American ecologist. He is Regents Professor and McKnight Presidential Chair in Ecology at the University of Minnesota, as well as an instructor in Conservation Biology; Ecology, Evolution, and Behavior; and Microbial Ecology. He is director of the Cedar Creek Ecosystem Science Reserve long-term ecological research station. Tilman is also a professor at University of California, Santa Barbara's Bren School of Environmental Science & Management.

<span class="mw-page-title-main">Community (ecology)</span> Associated populations of species in a given area

In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".

The storage effect is a coexistence mechanism proposed in the ecological theory of species coexistence, which tries to explain how such a wide variety of similar species are able to coexist within the same ecological community or guild. The storage effect was originally proposed in the 1980s to explain coexistence in diverse communities of coral reef fish, however it has since been generalized to cover a variety of ecological communities. The theory proposes one way for multiple species to coexist: in a changing environment, no species can be the best under all conditions. Instead, each species must have a unique response to varying environmental conditions, and a way of buffering against the effects of bad years. The storage effect gets its name because each population "stores" the gains in good years or microhabitats (patches) to help it survive population losses in bad years or patches. One strength of this theory is that, unlike most coexistence mechanisms, the storage effect can be measured and quantified, with units of per-capita growth rate.

<i>The Theory of Island Biogeography</i> 1967 book by Robert MacArthur and Edward O. Wilson

The Theory of Island Biogeography is a 1967 book by the ecologist Robert MacArthur and the biologist Edward O. Wilson. It is widely regarded as a seminal work in island biogeography and ecology. The Princeton University Press reprinted the book in 2001 as a part of the "Princeton Landmarks in Biology" series. The book popularized the theory that insular biota maintain a dynamic equilibrium between immigration and extinction rates. The book also popularized the concepts and terminology of r/K selection theory.

<span class="mw-page-title-main">Dominance (ecology)</span> Measure of species ecological influence

Ecological dominance is the degree to which one or several species have a major influence controlling the other species in their ecological community or make up more of the biomass. Both the composition and abundance of species within an ecosystem can be affected by the dominant species present.

Limiting similarity is a concept in theoretical ecology and community ecology that proposes the existence of a maximum level of niche overlap between two given species that will allow continued coexistence.

<span class="mw-page-title-main">Plant ecology</span> The study of effect of the environment on the abundance and distribution of plants

Plant ecology is a subdiscipline of ecology that studies the distribution and abundance of plants, the effects of environmental factors upon the abundance of plants, and the interactions among plants and between plants and other organisms. Examples of these are the distribution of temperate deciduous forests in North America, the effects of drought or flooding upon plant survival, and competition among desert plants for water, or effects of herds of grazing animals upon the composition of grasslands.

<span class="mw-page-title-main">Universal adaptive strategy theory</span> Theoretical ecology

Universal adaptive strategy theory (UAST) is an evolutionary theory developed by J. Philip Grime in collaboration with Simon Pierce describing the general limits to ecology and evolution based on the trade-off that organisms face when the resources they gain from the environment are allocated between either growth, maintenance or regeneration – known as the universal three-way trade-off.

In ecology, a priority effect refers to the impact that a particular species can have on community development as a result of its prior arrival at a site. There are two basic types of priority effects: inhibitory and facilitative. An inhibitory priority effect occurs when a species that arrives first at a site negatively affects a species that arrives later by reducing the availability of space or resources. In contrast, a facilitative priority effect occurs when a species that arrives first at a site alters abiotic or biotic conditions in ways that positively affect a species that arrives later. Inhibitory priority effects have been documented more frequently than facilitative priority effects. Studies indicate that both abiotic and biotic factors can affect the strength of priority effects. Priority effects are a central and pervasive element of ecological community development that have significant implications for natural systems and ecological restoration efforts.

<span class="mw-page-title-main">Coexistence theory</span> Framework explaining how competitor traits can maintain species diversity

Coexistence theory is a framework to understand how competitor traits can maintain species diversity and stave-off competitive exclusion even among similar species living in ecologically similar environments. Coexistence theory explains the stable coexistence of species as an interaction between two opposing forces: fitness differences between species, which should drive the best-adapted species to exclude others within a particular ecological niche, and stabilizing mechanisms, which maintains diversity via niche differentiation. For many species to be stabilized in a community, population growth must be negative density-dependent, i.e. all participating species have a tendency to increase in density as their populations decline. In such communities, any species that becomes rare will experience positive growth, pushing its population to recover and making local extinction unlikely. As the population of one species declines, individuals of that species tend to compete predominantly with individuals of other species. Thus, the tendency of a population to recover as it declines in density reflects reduced intraspecific competition (within-species) relative to interspecific competition (between-species), the signature of niche differentiation.

Plant strategies include mechanisms and responses plants use to reproduce, defend, survive, and compete on the landscape. The term “plant strategy” has existed in the literature since at least 1965, however multiple definitions exist. Strategies have been classified as adaptive strategies, reproductive strategies, resource allocation strategies, ecological strategies, and functional trait based strategies, to name a few. While numerous strategies exist, one underlying theme is constant: plants must make trade-offs when responding to their environment. These trade-offs and responses lay the groundwork for classifying the strategies that emerge.

Size-asymmetric competition refers to situations in which larger individuals exploit disproportionately greater amounts of resources when competing with smaller individuals. This type of competition is common among plants but also exists among animals. Size-asymmetric competition usually results from large individuals monopolizing the resource by "pre-emption"—i.e., exploiting the resource before smaller individuals are able to obtain it. Size-asymmetric competition has major effects on population structure and diversity within ecological communities.

References

  1. 1 2 3 4 Tilman, David (1982). Resource competition and community structure. Vol. 17. Princeton: Princeton University Press. pp. 1–296. ISBN   9780691083025. PMID   7162524.{{cite book}}: |journal= ignored (help)
  2. Wilson, J. Bastow; Spijkerman, Elly; Huisman, Jef (May 2007). "Is There Really Insufficient Support for Tilman's * Concept? A Comment on Miller et al". The American Naturalist. 169 (5): 700–706. doi:10.1086/513113. PMID   17427140. S2CID   30798966.
  3. 1 2 3 Grover, James P. (1997). Resource competition (1st ed.). London: Chapman & Hall. ISBN   978-0412749308.
  4. Miller, Thomas E.; Burns, Jean H.; Munguia, Pablo; Walters, Eric L.; Kneitel, Jamie M.; Richards, Paul M.; Mouquet, Nicolas; Buckley, Hannah L. (April 2005). "A Critical Review of Twenty Years' Use of the Resource-Ratio Theory". The American Naturalist. 165 (4): 439–448. doi:10.1086/428681. PMID   15791536. S2CID   30750778.
  5. Dybzinski, Ray; Tilman, David (September 2007). "Resource Use Patterns Predict Long-Term Outcomes of Plant Competition for Nutrients and Light". The American Naturalist. 170 (3): 305–318. doi:10.1086/519857. PMID   17879183. S2CID   10048315.
  6. 1 2 Craine, Joseph (2005). "Reconciling plant strategy theories of Grime and Tilman". Journal of Ecology. 93 (6): 1041–1052. Bibcode:2005JEcol..93.1041C. doi: 10.1111/j.1365-2745.2005.01043.x .
  7. Jabot (2012). "general modelling framework for resource-ratio and CSR theories of plant community dynamics" (PDF). Journal of Ecology. 100 (6): 1296–1302. doi: 10.1111/j.1365-2745.2012.02024.x .
  8. DeMalach (2016). "Size asymmetry of resource competition and the structure of plant communities". Journal of Ecology. 104 (4): 899–910. Bibcode:2016JEcol.104..899D. doi: 10.1111/1365-2745.12557 .