Safe-life design

Last updated

In safe-life design, products are intended to be removed from service at a specific design life.

Contents

Safe-life is particularly relevant to simple metal aircraft, where airframe components are subjected to alternating loads over the lifetime of the aircraft which makes them susceptible to metal fatigue. In certain areas such as in wing or tail components, structural failure in flight would be catastrophic. [1]

The safe-life design technique is employed in critical systems which are either very difficult to repair or whose failure may cause severe damage to life and property. These systems are designed to work for years without requirement of any repairs.

The disadvantage of the safe-life design philosophy is that serious assumptions must be made regarding the alternating loads imposed on the aircraft, so if those assumptions prove to be inaccurate, cracks may commence prior to the component being removed from service. To counter this disadvantage, alternative design philosophies like fail-safe design and fault-tolerant design were developed.

The automotive industry

One way the safe-life approach is planning and envisaging the toughness of the mechanisms in the automotive industry. When the repetitive loading on mechanical structures intensified with the advent of the steam engine, back in the mid-1800s, this approach was established (Oja 2013). According to Michael Oja, “Engineers and academics began to understand the effect that cyclic stress (or strain) has on the life of a component; a curve was developed relating the magnitude of the cyclic stress (S) to the logarithm of the number of cycles to failure (N)” (Oja 2013). The S-N curve because the fundamental relation is in safe life designs. The curve is reliant on many conditions, including the ratio of maximum load to minimum load (R-ratio), the type of material being inspected, and the regularity at which the cyclic stresses (or strains) are applied. Today, the curve is still consequential by experimentally testing laboratory specimens at many continuous cyclic load levels, and detecting the number of cycles to failure (Oja 2013). Michael Oja states that, “Unsurprisingly, as the load decreases, the life of the specimen increases” (Oja 2013). The practical limit of experimental challenges has been due to frequency confines of hydraulic-powered test machines. The load at which this high-cycle life happens has come to be recognized as the fatigue asset of the material (Oja 2013).

Aerospace

Aircraft structure

There are two generic types of aircraft structure, the Safe Life and the Fail Safe. The former is one that has low residual strength if a primary load-bearing member should fail, whereas the latter has alternative load paths so that if a primary load-bearing member cracks, residual strength remains because the loads can be assumed by adjacent members. In modern aircraft Fail Safe structures with up to three alternative load paths are provided, but back in 1947 the main load-bearing structure was Safe Life. This did not matter on an interim airframe designed for operations in the calm upper air, but at around 500 ft the loads and stresses were more volatile.

Helicopter structure

The safe-life design philosophy is applied to all helicopter structures. [2] In the current generation of Army helicopters, such as the UH-60 Black Hawk, composite materials make up as great as 17 percent of the airframe and rotor weight (Reddick). Harold Reddick states that, “With the advent of major helicopter composite structures R&D projects, such as the Advanced Composite Airframe Program (ACAP), and Manufacturing Methods and Technology (MM&T) projects, such as UH-60 Low Cost Composite Blade Program, it is estimated that within a few years composite materials could be applied to as much as 80% of the airframe and rotor weight of a helicopter in a production program” (Reddick). Along with this application, it is the essential obligation that sound, definitive design criteria be industrialized in order that the composite structures own high fatigue lives for economy of ownership and good damage tolerance for flight safety. Safe-life and damage-tolerant criteria are practical to all helicopter flight critical components (Reddick).

See also

Related Research Articles

In engineering, a factor of safety (FoS), also known as safety factor (SF), expresses how much stronger a system is than it needs to be for an intended load. Safety factors are often calculated using detailed analysis because comprehensive testing is impractical on many projects, such as bridges and buildings, but the structure's ability to carry a load must be determined to a reasonable accuracy.

<span class="mw-page-title-main">Fatigue (material)</span> Initiation and propagation of cracks in a material due to cyclic loading

In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of the fracture surface. The crack will continue to grow until it reaches a critical size, which occurs when the stress intensity factor of the crack exceeds the fracture toughness of the material, producing rapid propagation and typically complete fracture of the structure.

<span class="mw-page-title-main">Airframe</span> Mechanical structure of an aircraft

The mechanical structure of an aircraft is known as the airframe. This structure is typically considered to include the fuselage, undercarriage, empennage and wings, and excludes the propulsion system.

<span class="mw-page-title-main">Stress concentration</span> Location in an object where stress is far greater than the surrounding region

In solid mechanics, a stress concentration is a location in an object where the stress is significantly greater than the surrounding region. Stress concentrations occur when there are irregularities in the geometry or material of a structural component that cause an interruption to the flow of stress. This arises from such details as holes, grooves, notches and fillets. Stress concentrations may also occur from accidental damage such as nicks and scratches.

<span class="mw-page-title-main">Fracture mechanics</span> Study of propagation of cracks in materials

Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture.

In engineering, damage tolerance is a property of a structure relating to its ability to sustain defects safely until repair can be effected. The approach to engineering design to account for damage tolerance is based on the assumption that flaws can exist in any structure and such flaws propagate with usage. This approach is commonly used in aerospace engineering, mechanical engineering, and civil engineering to manage the extension of cracks in structure through the application of the principles of fracture mechanics. A structure is considered to be damage tolerant if a maintenance program has been implemented that will result in the detection and repair of accidental damage, corrosion and fatigue cracking before such damage reduces the residual strength of the structure below an acceptable limit.

A structural load or structural action is a force, deformation, or acceleration applied to structural elements. A load causes stress, deformation, and displacement in a structure. Structural analysis, a discipline in engineering, analyzes the effects of loads on structures and structural elements. Excess load may cause structural failure, so this should be considered and controlled during the design of a structure. Particular mechanical structures—such as aircraft, satellites, rockets, space stations, ships, and submarines—are subject to their own particular structural loads and actions. Engineers often evaluate structural loads based upon published regulations, contracts, or specifications. Accepted technical standards are used for acceptance testing and inspection.

AFGROW is a Damage Tolerance Analysis (DTA) computer program that calculates crack initiation, fatigue crack growth, and fracture to predict the life of metallic structures. Originally developed by the Air Force Research Laboratory, AFGROW is mainly used for aerospace applications, but can be applied to any type of metallic structure that experiences fatigue cracking.

Within the branch of materials science known as material failure theory, the Goodman relation is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. The equation is typically presented as a linear curve of mean stress vs. alternating stress that provides the maximum number of alternating stress cycles a material will withstand before failing from fatigue.

Thermo-mechanical fatigue is the overlay of a cyclical mechanical loading, that leads to fatigue of a material, with a cyclical thermal loading. Thermo-mechanical fatigue is an important point that needs to be considered, when constructing turbine engines or gas turbines.

Low plasticity burnishing (LPB) is a method of metal improvement that provides deep, stable surface compressive residual stresses with little cold work for improved damage tolerance and metal fatigue life extension. Improved fretting fatigue and stress corrosion performance has been documented, even at elevated temperatures where the compression from other metal improvement processes relax. The resulting deep layer of compressive residual stress has also been shown to improve high cycle fatigue (HCF) and low cycle fatigue (LCF) performance.

A crack arrestor is a structural engineering device. Being typically shaped into ring or strip, and composed of a strong material, it serves to contain stress corrosion cracking or fatigue cracking, helping to prevent the catastrophic failure of a device.

The term "smart structures" is commonly used for structures which have the ability to adapt to environmental conditions according to the design requirements. As a rule, the adjustments are designed and performed in order to increase the efficiency or safety of the structure. Combining "smart structures" with the "sophistication" achieved in materials science, information technology, measurement science, sensors, actuators, signal processing, nanotechnology, cybernetics, artificial intelligence, and biomimetics, one can talk about Smart Intelligent Structures. In other words, structures which are able to sense their environment, self-diagnose their condition and adapt in such a way so as to make the design more useful and efficient.

Polymer fracture is the study of the fracture surface of an already failed material to determine the method of crack formation and extension in polymers both fiber reinforced and otherwise. Failure in polymer components can occur at relatively low stress levels, far below the tensile strength because of four major reasons: long term stress or creep rupture, cyclic stresses or fatigue, the presence of structural flaws and stress-cracking agents. Formations of submicroscopic cracks in polymers under load have been studied by x ray scattering techniques and the main regularities of crack formation under different loading conditions have been analyzed. The low strength of polymers compared to theoretically predicted values are mainly due to the many microscopic imperfections found in the material. These defects namely dislocations, crystalline boundaries, amorphous interlayers and block structure can all lead to the non-uniform distribution of mechanical stress.

<span class="mw-page-title-main">Critical plane analysis</span> Analysis of multiaxial stresses and strains

Critical plane analysis refers to the analysis of stresses or strains as they are experienced by a particular plane in a material, as well as the identification of which plane is likely to experience the most extreme damage. Critical plane analysis is widely used in engineering to account for the effects of cyclic, multiaxial load histories on the fatigue life of materials and structures. When a structure is under cyclic multiaxial loading, it is necessary to use multiaxial fatigue criteria that account for the multiaxial loading. If the cyclic multiaxial loading is nonproportional it is mandatory to use a proper multiaxial fatigue criteria. The multiaxial criteria based on the Critical Plane Method are the most effective criteria.

Low cycle fatigue (LCF) has two fundamental characteristics: plastic deformation in each cycle; and low cycle phenomenon, in which the materials have finite endurance for this type of load. The term cycle refers to repeated applications of stress that lead to eventual fatigue and failure; low-cycle pertains to a long period between applications.

<span class="mw-page-title-main">Cascade chart (NDI interval reliability)</span>

A cascade chart is tool that can be used in damage tolerance analysis to determine the proper inspection interval, based on reliability analysis, considering all the context uncertainties. The chart is called a "cascade chart" because the scatter of data points and downward curvature resembles a waterfall or cascade. This name was first introduced by Dr. Alberto W Mello in his work "Reliability prediction for structures under cyclic loads and recurring inspections". Materials subject to cyclic loads, as shown in the graph on the right, may form and propagate cracks over time due to fatigue. Therefore, it is essential to determine a reliable inspection interval. There are numerous factors that must be considered to determine this inspection interval. The non-destructive inspection (NDI) technique must have a high probability of detecting a crack in the material. If missed, a crack may lead the structure to a catastrophic failure before the next inspection. On the other hand, the inspection interval cannot be too frequent that the structure's maintenance is no longer profitable.

Fatigue of welded joints can occur when poorly made or highly stressed welded joints are subjected to cyclic loading. Welding is a manufacturing method used to join various materials in order to form an assembly. During welding, joints are formed between two or more separate pieces of material which can introduce defects or residual stresses. Under cyclic loading these defects can grow a fatigue crack, causing the assembly to fail even if these cyclic stresses are low and smaller than the base material and weld filler material yield stress. Hence, the fatigue strength of a welded joint does not correlate to the fatigue strength of the base material. Incorporating design considerations in the development phase can reduce failures due to fatigue in welded joints.

<span class="mw-page-title-main">Crack growth equation</span>

A crack growth equation is used for calculating the size of a fatigue crack growing from cyclic loads. The growth of fatigue cracks can result in catastrophic failure, particularly in the case of aircraft. A crack growth equation can be used to ensure safety, both in the design phase and during operation, by predicting the size of cracks. In critical structure, loads can be recorded and used to predict the size of cracks to ensure maintenance or retirement occurs prior to any of the cracks failing.

<span class="mw-page-title-main">Fatigue testing</span> Determination of a material or structures resiliency against cyclic loading

Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. Fatigue tests are used on a range of components from coupons through to full size test articles such as automobiles and aircraft.

References

  1. Force V: The history of Britain's airborne deterrent, by Andrew Brookes. Jane's Publishing Co Ltd; First Edition 1 Jan. 1982, ISBN   0710602383, p.144.
  2. Reddick, Harold. "Safe-Life and Damage-Tolerant Design Approaches for Helicopter Structures" (PDF). NASA. Retrieved June 11, 2019.

Citations