Space Weather Follow On-Lagrange 1

Last updated

Space Weather Follow On-Lagrange 1
SWFO-L1.jpg
Space Weather Follow On-Lagrange 1 satellite
NamesSWFO-L1
Mission type Space weather
Operator NOAA
Start of mission
Launch dateMarch 31 2025
Rocket Falcon 9 Block 5
Launch site Cape Canaveral, SLC-40
Contractor SpaceX
Orbital parameters
Reference system Geocentric orbit
Regime L1
Instruments
Solar Wind Instrument Suite (SWIS)
Magnetometer
Solar Wind Plasma Sensor (SWiPS)
Compact Coronagraph (CCOR)
Supra-Thermal Ion Sensor (STIS)
Space Weather Follow On program
  DSCOVR
 

Space Weather Follow On-Lagrange 1 (SWFO-L1) is a future spacecraft mission planned to monitor signs of solar storms, which may pose harm to Earth's telecommunication network. The spacecraft will be operated by the National Oceanic and Atmospheric Administration (NOAA), with launch scheduled for 31 March 2025. [1] [2] It is planned to be placed at the Sun–Earth L1 Lagrange point, a location between the Earth and the Sun. This will allow SWFO-L1 to continuously watch the solar wind and energetic particles heading for Earth. SWFO-L1 is an ESPA Class Spacecraft, sized for launch on an Evolved Expendable Launch Vehicle Secondary Payload Adapter (ESPA) Grande ring in addition to the rocket's primary payload. [1] The spacecraft's Solar Wind Instrument Suite (SWIS) which includes three instruments will monitor solar wind, and the Compact Coronagraph (CCOR) will monitor the Sun's surroundings to image coronal mass ejection (CME). [1] A CME is a large outburst of plasma sent from the Sun towards interplanetary space.

Contents

Together with space weather observation capabilities on the Earth-orbiting GOES-U satellite, SWFO-L1 constitutes the space segment of NOAA's Space Weather Follow On (SWFO) program. The aim of the SWFO program is to ensure the robust continuity of space-based measurement of the critical space weather environment. [3] [4] All of the spacecraft located in L1 which are currently monitoring CMEs and the solar wind have operated beyond their design lifetime. The Advanced Composition Explorer (ACE) is expected to consume its remaining propellant around 2024. Deep Space Climate Observatory (DSCOVR), NOAA's primary solar wind monitor, was launched in 2015 with a five year design lifetime. The European Space Agency-NASA Solar and Heliospheric Observatory (SOHO) will cease operation before the mid-2020s. [5] SWFO-L1's SWIS instruments will replace ACE's and DSCOVR's monitoring of solar wind, energetic particles and the interplanetary magnetic field while CCOR will replace SOHO's LASCO (Large Angle and Spectrometric Coronagraph) imaging of CMEs. [1]

Command and control system

NOAA has awarded, on 5 February 2021, the Space Weather Follow On-Lagrange 1 (SWFO-L1) Command and control contract to L3Harris in Melbourne, Florida. The contract has a total value of US$43.8 million, with a five-year performance period. The SWFO-L1 mission is planned to launch in 31 March 2025 as a rideshare with the NASA Interstellar Mapping and Acceleration Probe (IMAP). The contractor is responsible for up to two years of operations support of a Command and control of the SWFO-L1 observatory. This will be accomplished by adding the capability to existing Geostationary Operational Environmental Satellite-R Series Core Ground System. [6]

NOAA manages the contract. In addition to work at L3Harris' facility in Melbourne, the contractor will install equipment at the NOAA Satellite Operations Facility (NSOF) in Suitland, Maryland; NOAA's Wallops Command and Data Acquisition Station (WCDAS) in Wallops, Virginia; and at NOAA's Consolidated Backup Facility (CBU) in Fairmont, West Virginia. [6]

The work will allow SWFO-L1 to provide continuity of solar wind and coronal mass ejection imagery data from the Lagrange-1 point to NOAA's National Weather Service Space Weather Prediction Center in Boulder, Colorado. These data are critical to support monitoring and timely forecasts of space weather events that have the potential to adversely impact elements vital to national security and economic prosperity, including telecommunication and navigation, satellite systems and the power grid. NOAA is responsible for overall implementation and funding of the SWFO program. The program is managed as an integrated NOAA-NASA program, where NASA serves as NOAA's acquisition agent for the space segment and for launch services. NOAA is responsible for the ground segment including the acquisition, development, test and integration of the SWFO Command and control system. [6]

Instruments

In April 2020, Southwest Research Institute (SwRI) was awarded a contract to supply SWFO-L1's magnetometer instrument. [7]

On 1 July 2020, on behalf of NOAA, NASA awarded the Space Weather Follow On-Lagrange 1 (SWFO-L1) Solar Wind Plasma Sensor (SWiPS) contract to Southwest Research Institute (SwRI) in San Antonio, Texas. SwRI was awarded a contract with a total value of US$15.6 million. The period of performance is 76 months. SWFO-L1 will provide NOAA with the continuity of solar wind data and coronal mass ejection imagery, the National Weather Service's highest priority for space weather observations. University of California, Berkeley was awarded US$7.5 million for the development of the Supra-Thermal Ion Sensor (STIS) [8] . The SWFO-L1 satellite, which is planned to launch as a rideshare with the NASA Interstellar Mapping and Acceleration Probe (IMAP), will collect upstream solar wind data and coronal imagery to support NOAA's mission to monitor and forecast space weather events. NOAA is responsible for the Space Weather Follow On program. NASA is the program's flight system procurement agent, and NASA's Goddard Space Flight Center in Greenbelt, Maryland, is the lead for this acquisition. [9]

Launch

Space Weather Follow On-Lagrange 1 is planned to be launched as a secondary payload on the SpaceX Falcon 9 launch vehicle carrying NASA's Interstellar Mapping and Acceleration Probe (IMAP) spacecraft. [10] [11] As of December 2020, the launch was scheduled for February 2025, [1] [10] [2] but has since been delayed to December 2025. [12]

Related Research Articles

<span class="mw-page-title-main">Space weather</span> Branch of space physics and aeronomy

Space weather is a branch of space physics and aeronomy, or heliophysics, concerned with the varying conditions within the Solar System and its heliosphere. This includes the effects of the solar wind, especially on the Earth's magnetosphere, ionosphere, thermosphere, and exosphere. Though physically distinct, space weather is analogous to the terrestrial weather of Earth's atmosphere. The term "space weather" was first used in the 1950s and popularized in the 1990s. Later, it prompted research into "space climate", the large-scale and long-term patterns of space weather.

<span class="mw-page-title-main">Solar and Heliospheric Observatory</span> European space observatory

The Solar and Heliospheric Observatory (SOHO) is a European Space Agency (ESA) spacecraft built by a European industrial consortium led by Matra Marconi Space that was launched on a Lockheed Martin Atlas IIAS launch vehicle on 2 December 1995, to study the Sun. It has also discovered over 5,000 comets. It began normal operations in May 1996. It is a joint project between the European Space Agency (ESA) and NASA. SOHO was part of the International Solar Terrestrial Physics Program (ISTP). Originally planned as a two-year mission, SOHO continues to operate after over 25 years in space; the mission has been extended until the end of 2025, subject to review and confirmation by ESA's Science Programme Committee.

<span class="mw-page-title-main">Deep Space Climate Observatory</span> American solar research spacecraft

Deep Space Climate Observatory is a National Oceanic and Atmospheric Administration (NOAA) space weather, space climate, and Earth observation satellite. It was launched by SpaceX on a Falcon 9 v1.1 launch vehicle on 11 February 2015, from Cape Canaveral. This is NOAA's first operational deep space satellite and became its primary system of warning Earth in the event of solar magnetic storms.

<span class="mw-page-title-main">Advanced Composition Explorer</span> NASA satellite of the Explorer program

Advanced Composition Explorer is a NASA Explorer program satellite and space exploration mission to study matter comprising energetic particles from the solar wind, the interplanetary medium, and other sources.

<span class="mw-page-title-main">THEMIS</span> NASA satellite of the Explorer program

Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission began in February 2007 as a constellation of five NASA satellites to study energy releases from Earth's magnetosphere known as substorms, magnetic phenomena that intensify auroras near Earth's poles. The name of the mission is an acronym alluding to the Titan Themis.

<span class="mw-page-title-main">NOAA-19</span> Weather satellite

NOAA-19, known as NOAA-N' before launch, is the last of the American National Oceanic and Atmospheric Administration (NOAA) series of weather satellites. NOAA-19 was launched on 6 February 2009. NOAA-19 is in an afternoon Sun-synchronous orbit and is intended to replace NOAA-18 as the prime afternoon spacecraft.

<span class="mw-page-title-main">NOAA-17</span>

NOAA-17, also known as NOAA-M before launch, was an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-17 also continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983 but with additional new and improved instrumentation over the NOAA A-L series and a new launch vehicle.

<span class="mw-page-title-main">OSTM/Jason-2</span> International Earth observation satellite mission

OSTM/Jason-2, or Ocean Surface Topography Mission/Jason-2 satellite, was an international Earth observation satellite altimeter joint mission for sea surface height measurements between NASA and CNES. It was the third satellite in a series started in 1992 by the NASA/CNES TOPEX/Poseidon mission and continued by the NASA/CNES Jason-1 mission launched in 2001.

<span class="mw-page-title-main">Aditya-L1</span> Indias first solar observation mission

Aditya-L1 (/aːd̪it̪jə/) is a coronagraphy spacecraft for studying the solar atmosphere, designed and developed by the Indian Space Research Organisation (ISRO) and various other Indian Space Research Institutes. It is orbiting at about 1.5 million km from Earth in a halo orbit around the Lagrange point 1 (L1) between the Earth and the Sun, where it will study the solar atmosphere, solar magnetic storms, and their impact on the environment around the Earth.

<span class="mw-page-title-main">Suomi NPP</span> Earth Weather Satellite

The Suomi National Polar-orbiting Partnership, previously known as the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) and NPP-Bridge, is a weather satellite operated by the United States National Oceanic and Atmospheric Administration (NOAA). It was launched in 2011 and is currently in operation.

Global Geospace science program (GGS) is designed to improve greatly the understanding the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on geospace. GGS has primary scientific objective of its own:

<span class="mw-page-title-main">GOES-17</span> NOAA weather satellite

GOES-17 is an environmental satellite operated by the National Oceanic and Atmospheric Administration (NOAA). The satellite is second in the four-satellite GOES-R series. GOES-17 supports the Geostationary Operational Environmental Satellite (GOES) system, providing multi-spectral imaging for weather forecasts and meteorological and environmental research. The satellite was built by Lockheed Martin, based on the A2100A platform, and expected to have a useful life of 15 years. GOES-17 is intended to deliver high-resolution visible and infrared imagery and lightning observations of more than half the globe.

<span class="mw-page-title-main">NOAA-21</span> NASA/NOAA satellite

NOAA-21, designated JPSS-2 prior to launch, is the second of the United States National Oceanic and Atmospheric Administration (NOAA)'s latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites called the Joint Polar Satellite System. NOAA-21 was launched on 10 November 2022 and join NOAA-20 and Suomi NPP in the same orbit. Circling the Earth from pole-to-pole, it will cross the equator about 14 times daily, providing full global coverage twice a day. It was launched with LOFTID.

<span class="mw-page-title-main">NOAA-20</span> NASA satellite

NOAA-20, designated JPSS-1 prior to launch, is the first of the United States National Oceanic and Atmospheric Administration's latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites called the Joint Polar Satellite System. NOAA-20 was launched on 18 November 2017 and joined the Suomi National Polar-orbiting Partnership satellite in the same orbit. NOAA-20 operates about 50 minutes behind Suomi NPP, allowing important overlap in observational coverage. Circling the Earth from pole-to-pole, it crosses the equator about 14 times daily, providing full global coverage twice a day. This gives meteorologists information on "atmospheric temperature and moisture, clouds, sea-surface temperature, ocean color, sea ice cover, volcanic ash, and fire detection" so as to enhance weather forecasting including hurricane tracking, post-hurricane recovery by detailing storm damage and mapping of power outages.

<span class="mw-page-title-main">ESA Vigil</span> 2018 ESA concept study for a solar weather mission

The Vigil mission, formerly known as Lagrange, is a Space weather weather mission developed by European Space Agency. The mission will provide the ESA Space Weather Office with instruments able to monitor the Sun, its solar corona and interplanetary medium between the Sun and Earth, to provide early warnings of increased solar activity, to identify and mitigate potential threats to society and ground, airborne and space based infrastructure as well as to allow 4 to 5 days space weather forecasts. To this purpose the Vigil mission will place for the first time a spacecraft at Sun-Earth Lagrange point 5 (L5) from where it would get a 'side' view of the Sun, observing regions of solar activity on the solar surface before they turn and face Earth.

GOES-U is a weather satellite, the fourth and last of the GOES-R series of satellites operated by the National Oceanic and Atmospheric Administration (NOAA). The GOES-R series will extend the availability of the Geostationary Operational Environmental Satellite (GOES) system until 2036. The satellite is built by Lockheed Martin, based on the A2100 platform.

<span class="mw-page-title-main">Interstellar Mapping and Acceleration Probe</span> Planned NASA heliophysics mission

The Interstellar Mapping and Acceleration Probe(IMAP) is a heliophysics mission that will simultaneously investigate two important and coupled science topics in the heliosphere: the acceleration of energetic particles and interaction of the solar wind with the local interstellar medium. These science topics are coupled because particles accelerated in the inner heliosphere play crucial roles in the outer heliospheric interaction. In 2018, NASA selected a team led by David J. McComas of Princeton University to implement the mission, which is currently planned to launch in late April to late May 2025. IMAP will be a Sun-tracking spin-stabilized satellite in orbit about the Sun–Earth L1 Lagrange point with a science payload of ten instruments. IMAP will also continuously broadcast real-time in-situ data that can be used for space weather prediction.

Polarimeter to Unify the Corona and Heliosphere (PUNCH) is a future mission by NASA to study the unexplored region from the middle of the solar corona out to 1 AU from the Sun. PUNCH will consist of a constellation of four microsatellites that through continuous 3D deep-field imaging, will observe the corona and heliosphere as elements of a single, connected system. The four microsatellites were initially scheduled to be launched in October 2023, but they have since been moved to an April 2025 launch in rideshare with SPHEREx.

Solar Cruiser was a planned NASA spacecraft that would have studied the Sun while propelled by a solar sail. The mission would have supported NASA's Solar Terrestrial Probes program by studying how interplanetary space changes in response to the constant outpouring of energy and particles from the Sun and how it interacts with planetary atmospheres. It was expected to launch as a rideshare payload alongside IMAP in February 2025. However, the spacecraft was not selected for further development and project closeout efforts concluded in 2023.

References

  1. 1 2 3 4 5 Ullman, Richard (26 June 2019). "NOAA's Current and Future Space Weather Observational Architecture" (PDF). Office of the Federal Coordinator for Meteorology. Retrieved 16 October 2019.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  2. 1 2 "NASA Confirms New SIMPLEx Mission Small Satellite to Blaze Trails Studying Lunar Surface". NASA. 2 December 2020. Retrieved 4 December 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  3. Talaat, Elsayed (4 April 2019). "NOAA's Current and Future Space Weather Architecture" (PDF). Space Weather Prediction Center. Retrieved 16 October 2019.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  4. Onsager, Terry. "NOAA's Space Weather Plans" (PDF). Space Weather Prediction Center. Retrieved 16 October 2019.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  5. Werner, Debra (6 March 2019). "Are small satellites the solution for space weather monitoring?". SpaceNews. Retrieved 13 October 2019.
  6. 1 2 3 "NOAA awards SWFO Ground System Command and Control contract". NOAA. 5 February 2021. Retrieved 6 February 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  7. "NOAA's Space Weather Follow On-Lagrange 1 Magnetometer Awarded" (Press release). NOAA. 15 April 2020. Retrieved 28 April 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  8. "NASA Awards NOAA's Space Weather Follow On – Supra Thermal Ion Sensor". NASA. Retrieved 13 May 2024.
  9. "NASA Awards NOAA's Space Weather Follow On-Lagrange 1 Solar Wind Plasma Sensor". NOAA. 1 July 2020. Retrieved 6 February 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  10. 1 2 "NASA Selects Proposals to Further Study the Fundamental Nature of Space" (Press release). NASA. 13 August 2019. Retrieved 9 October 2019.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  11. "NASA Awards Launch Services Contract for IMAP Mission" (Press release). NASA. 25 September 2020. Retrieved 25 September 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  12. "GAO Assessment of major projects" (PDF). gao.gov. June 2022. p. 105. Retrieved 24 June 2022. IMAP entered the implementation phase in July 2021 and established cost and schedule baselines of $781.8 million and march 2025, respectively. According to program documentation, the project is maintaining cost and schedule reserves within requirements.