PROBA-3

Last updated
Proba-3
PROBA-3 artistic rendering.jpg
An artistic rendering of PROBA-3.
Mission type Solar observatory
technology demonstrator
Operator ESA
Website link
Mission duration2 years (nominal)
Spacecraft properties
ManufacturerS/C: SENER/Redwire/EADS CASA/GMV/SPACEBEL ASPIICS: CSL
Launch massCSC and OSC in stack: 550 kilograms (1,210 lb)
DimensionsCSC: 1.1 by 1.8 by 1.7 metres (3.6 ft × 5.9 ft × 5.6 ft)
OSC: 0.9 by 1.4 metres (3.0 ft × 4.6 ft)
Start of mission
Launch dateSeptember 2024 (planned) [1]
Rocket PSLV-XL C-62 (baselined) [2]
Launch siteIndia
Contractor NSIL
Orbital parameters
Reference system Geocentric
Regime Highly-elliptical Earth Orbit
Semi-major axis 36,943 kilometres (22,955 mi)
Eccentricity 0.8111
Perigee altitude 600 kilometres (370 mi)
Apogee altitude 60,530 kilometres (37,610 mi)
Inclination 59 degrees
Period 19.7 hours
RAAN 153 degrees
Argument of perigee 188 degrees
Epoch planned
  PROBA-V
 

Proba-3 is a dual probe technological demonstration mission by the European Space Agency devoted to high precision formation flying to achieve scientific coronagraphy. It is part of the series of PROBA satellites that are being used to validate new spacecraft technologies and concepts while also carrying scientific instruments.

Contents

History

The mission concept dates back to 2005 when a study was performed in the ESA CDF. After several phase A studies and a change of industrial organisation at the beginning of the phase B, [3] the mission's implementation phase (Phases C/D/E1) eventually began in July 2014. [4]

The system CDR has been closed in 2018. [5]

The two spacecraft integration before environmental campaign has been completed as of March 2023 [6]

Mission concept

Proba-3 consists of two independent, three-axis stabilized spacecraft: the Coronagraph Spacecraft (CSC) and the Occulter Spacecraft (OSC). Both spacecraft will fly close to each other on a highly elliptical orbit around the Earth, with an apogee at 60,500 km altitude. [4] [7] [8]

ESA said that by flying in tight formation about 150 metres apart, the Occulter will precisely cast its shadow onto the Coronagraph’s telescope, blocking the Sun’s direct light. This will allow the Coronagraph to image the faint solar corona in visible, ultraviolet and polarised light for many hours at a time. [9]

Along the apogee arc, when the gravity gradient is significantly smaller, the two spacecraft will autonomously acquire a formation configuration, such that the CSC remains at a fixed position in the shadow cast by the OSC. The CSC hosts a coronagraph which will then be able to observe the Sun Corona without being blinded by the intense light from the photosphere. Given the diameter of the occulter disk on the OSC and the intended Corona observation regions, the CSC must be at approximately 150 meters from the OSC, and maintain this position with millimetric accuracy, both in range and laterally. The scientific objective is to observe the Corona down to about 1.1 solar radius in the visible wavelength range.

Besides formation flying for coronagraphy, some formation flying demonstration manoeuvers (retargeting and resizing manoeuvers) will be attempted during the apogee phase of the orbit, as well as a space rendezvous experiment. [8]

The formation acquisition and control is performed on-board thanks to a set of metrology equipment and actuators. The metrology equipment comprise a laser based system providing high accuracy relative position estimate, a visual based sensor with a coarser precision but wider field of view, and a shadow position sensor providing finest precision when the CSC is in the vicinity of the target position in the shadow cone.

After the apogee arc, the formation is broken by impulsive manoeuvers executed by the S/C. The 2 S/C are placed on a relative trajectory that passively ensures no risk of collision during the perigee passage, when the spacecraft altitude goes down to 600 km. Along the perigee phase of the orbit, the 2 S/C acquire GNSS data to derive a precise estimation of the relative position and velocity that is propagated for a few hours up to the reacquisition of the metrology before the next apogee arc.

The CSC and OSC exchange sensor data and commands through a RF based inter-satellite link to coordinate their activities.Scientists hope Proba-3’s unique vantage point will provide new insights into the origins of coronal mass ejections (CMEs) — eruptions of solar material that can disrupt satellites and power grids on Earth. The mission will also measure total solar irradiance, tracking changes in the Sun’s energy output that may influence Earth’s climate. [9]

Design

Proba-3 fact sheet Proba-3 fact sheet.jpg
Proba-3 fact sheet

CSC and OSC Spacecraft

The CSC is a 300 kg mini-satellite, hosting the coronagraph ASPIICS and the shadow position sensors. It is equipped with a mono-propellant propulsion system to perform the large delta-V manoeuver necessary for formation acquisition and breaking. It also hosts the targets used by the metrology optical heads on board the OSC.

The OSC is a 250 kg mini-satellite, hosting the laser and visual metrology optical heads. It features the occulter disk that is 1.4 meter in diameter. The shape of its rim is intended to reduce the amount of sun diffracted light entering the coronagraph. The OSC uses a low-thrust cold gas propulsion system that enables the fine position control required for the formation flying.

Science Payloads

The primary payload is the ASPIICS Coronagraph. Its follows the design concept of a classical externally occulted Lyot coronagraph, with the external occulter physically attached to the OSC while the rest of the instrument is on the CSC. [10]

ASPIICS will observe the solar corona through refractive optics, able to select 3 different spectral bands: Fe XIV line @ 530.4 nm, He I D3 line @587.7 nm, and the white-light spectral band [540;570 nm]. [11]

It is expected that the data from ASPIICS will fill the gap in term of field of view between EUV imagers and externally occulted coronagraphs, when the latter are monolithic instruments that don't benefit from the longer distance enabled by formation flying. [12]

The Principal Investigator for the coronagraph instrument is from Royal Observatory of Belgium. [13]

A secondary scientific payload (DARA) is hosted on the OSC. DARA stands for Davos Absolute Radiometer and is an absolute radiometer for measuring Total Solar Irradiance (TSI). [14]

Ground Segment and Operations

Like the other Proba satellites, PROBA-3 will be operated from the ESA center in Redu, Belgium. [15]

Project Development

Proba-3 is a project managed by the European Space Agency. The industrial development of the S/C and the ground segment is led by SENER Aerospace [16] [17] which coordinates the work of a core team with Airbus Defence and Space, Qinetiq Space, GMV, Celestia Antwerp BV and Spacebel.

The Coronagraph payload is developed for ESA by a consortium led by Liège Space Center (CSL) in Belgium, made up of 15 companies and institutes from five ESA Member States. [17]

DARA is provided by the PMOD institute in Switzerland. [12]

Testing of the mission's vision-based sensor system was performed at ESA's ESTEC technical centre in the Netherlands in March 2021. The system will enable the two spacecraft to fly in a precise formation. The testing reportedly yielded promising results. [18] .The miniature satellites recently underwent final integration and were viewed in person by Proba-3’s Science Working Team. Members of the team plan to test flight hardware during April's total solar eclipse over North America, gaining valuable experience for interpreting Proba-3’s future results [9]

See also

Related Research Articles

<i>Ulysses</i> (spacecraft) 1990 robotic space probe; studied the Sun from a near-polar orbit

Ulysses was a robotic space probe whose primary mission was to orbit the Sun and study it at all latitudes. It was launched in 1990 and made three "fast latitude scans" of the Sun in 1994/1995, 2000/2001, and 2007/2008. In addition, the probe studied several comets. Ulysses was a joint venture of the European Space Agency (ESA) and the United States' National Aeronautics and Space Administration (NASA), under leadership of ESA with participation from Canada's National Research Council. The last day for mission operations on Ulysses was 30 June 2009.

<i>Giotto</i> (spacecraft) Halleys comet fly-by space mission

Giotto was a European robotic spacecraft mission from the European Space Agency. The spacecraft flew by and studied Halley's Comet and in doing so became the first spacecraft to make close up observations of a comet. On 13 March 1986, the spacecraft succeeded in approaching Halley's nucleus at a distance of 596 kilometers. It was named after the Early Italian Renaissance painter Giotto di Bondone. He had observed Halley's Comet in 1301 and was inspired to depict it as the star of Bethlehem in his painting Adoration of the Magi in the Scrovegni Chapel.

<span class="mw-page-title-main">Envisat</span> ESA Earth observation satellite (2002–2012)

Envisat is a large Earth-observing satellite which has been inactive since 2012. It is still in orbit and considered space debris. Operated by the European Space Agency (ESA), it was the world's largest civilian Earth observation satellite.

<span class="mw-page-title-main">Solar and Heliospheric Observatory</span> European space observatory

The Solar and Heliospheric Observatory (SOHO) is a European Space Agency (ESA) spacecraft built by a European industrial consortium led by Matra Marconi Space that was launched on a Lockheed Martin Atlas IIAS launch vehicle on 2 December 1995, to study the Sun. It has also discovered over 5,000 comets. It began normal operations in May 1996. It is a joint project between the European Space Agency (ESA) and NASA. SOHO was part of the International Solar Terrestrial Physics Program (ISTP). Originally planned as a two-year mission, SOHO continues to operate after over 25 years in space; the mission has been extended until the end of 2025, subject to review and confirmation by ESA's Science Programme Committee.

<span class="mw-page-title-main">Infrared Space Observatory</span> Orbital satellite telescope

The Infrared Space Observatory (ISO) was a space telescope for infrared light designed and operated by the European Space Agency (ESA), in cooperation with ISAS and NASA. The ISO was designed to study infrared light at wavelengths of 2.5 to 240 micrometres and operated from 1995 to 1998.

<span class="mw-page-title-main">Coronagraph</span> Telescopic attachment designed to block out the direct light from a star

A coronagraph is a telescopic attachment designed to block out the direct light from a star or other bright object so that nearby objects – which otherwise would be hidden in the object's bright glare – can be resolved. Most coronagraphs are intended to view the corona of the Sun, but a new class of conceptually similar instruments are being used to find extrasolar planets and circumstellar disks around nearby stars as well as host galaxies in quasars and other similar objects with active galactic nuclei (AGN).

<span class="mw-page-title-main">Solar Orbiter</span> European space-based solar observatory

The Solar Orbiter (SolO) is a Sun-observing probe developed by the European Space Agency (ESA) with a National Aeronautics and Space Administration (NASA) contribution. Solar Orbiter, designed to obtain detailed measurements of the inner heliosphere and the nascent solar wind, will also perform close observations of the polar regions of the Sun which is difficult to do from Earth. These observations are important in investigating how the Sun creates and controls its heliosphere.

PROBA, renamed PROBA-1, is a Belgian satellite technology demonstration mission launched atop an Indian Polar Satellite Launch Vehicle by ISRO on 22 October 2001. The satellite was funded through the ESA's MicroSat and General Study Program with the objective of addressing issues regarding on-board operational autonomy of a generic satellite platform. This small boxlike system, with solar panel collectors on its surface, hosts two Earth Observation instruments dubbed CHRIS and HRC. CHRIS is a hyperspectral system that images at 17 m resolution, while HRC is a monochromatic camera that images visible light at 5 m resolution.

<span class="mw-page-title-main">Interstellar Boundary Explorer</span> NASA satellite of the Explorer program

Interstellar Boundary Explorer is a NASA satellite in Earth orbit that uses energetic neutral atoms (ENAs) to image the interaction region between the Solar System and interstellar space. The mission is part of NASA's Small Explorer program and was launched with a Pegasus-XL launch vehicle on 19 October 2008.

<span class="mw-page-title-main">THEMIS</span> NASA satellite of the Explorer program

Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission began in February 2007 as a constellation of five NASA satellites to study energy releases from Earth's magnetosphere known as substorms, magnetic phenomena that intensify auroras near Earth's poles. The name of the mission is an acronym alluding to the Titan Themis.

<span class="mw-page-title-main">C/NOFS</span>

C/NOFS, or Communications/Navigation Outage Forecasting System was a USAF satellite developed by the Air Force Research Laboratory (AFRL) Space Vehicles Directorate to investigate and forecast scintillations in the Earth's ionosphere. It was launched by an Orbital Sciences Corporation Pegasus-XL launch vehicle at 17:02:48 UTC on 16 April 2008 and decayed on 28 November 2015.

<span class="mw-page-title-main">Aditya-L1</span> Indias first solar observation mission

Aditya-L1 (/aːd̪it̪jə/) is a coronagraphy spacecraft for studying the solar atmosphere, designed and developed by the Indian Space Research Organisation (ISRO) and various other Indian Space Research Institutes. It is orbiting at about 1.5 million km from Earth in a halo orbit around the Lagrange point 1 (L1) between the Earth and the Sun, where it will study the solar atmosphere, solar magnetic storms, and their impact on the environment around the Earth.

<span class="mw-page-title-main">OSO 7</span>

OSO 7 or Orbiting Solar Observatory 7, before launch known as OSO H is the seventh in the series of American Orbiting Solar Observatory satellites launched by NASA between 1962 and 1975. OSO 7 was launched from Cape Kennedy on 29 September 1971 by a Delta N rocket into a 33.1° inclination, low-Earth orbit, and re-entered the Earth's atmosphere on 9 July 1974. It was built by the Ball Brothers Research Corporation (BBRC), now known as Ball Aerospace, in Boulder Colorado.

<span class="mw-page-title-main">Lunar Lander (spacecraft)</span> Proposed 2018 ESA Moon mission

The Lunar Lander was a robotic mission intended to send a lander vehicle to the Moon, led by ESA's Human Spaceflight and Operations directorate. The primary objective of the Lunar Lander mission was to demonstrate Europe's ability to deliver payload safely and accurately to the Moon's surface. More specifically the mission would have demonstrated the technologies required to achieve a soft and precise landing while autonomously avoiding surface hazards that can endanger landing and surface mission safety. These technologies will be an asset for future human and robotic exploration missions. However the project was put on hold at the 2012 ESA Ministerial Council.

<span class="mw-page-title-main">SMILE (spacecraft)</span> Chinese–European satellite studying Earths magnetosphere

Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a planned joint venture mission between the European Space Agency and the Chinese Academy of Sciences. SMILE will image for the first time the magnetosphere of the Sun in soft X-rays and UV during up to 40 hours per orbit, improving our understanding of the dynamic interaction between the solar wind and Earth's magnetosphere. The prime science questions of the SMILE mission are

<span class="mw-page-title-main">ESA Vigil</span> 2018 ESA concept study for a solar weather mission

The Vigil mission, formerly known as Lagrange, is a Space weather weather mission developed by European Space Agency. The mission will provide the ESA Space Weather Office with instruments able to monitor the Sun, its solar corona and interplanetary medium between the Sun and Earth, to provide early warnings of increased solar activity, to identify and mitigate potential threats to society and ground, airborne and space based infrastructure as well as to allow 4 to 5 days space weather forecasts. To this purpose the Vigil mission will place for the first time a spacecraft at Sun-Earth Lagrange point 5 (L5) from where it would get a 'side' view of the Sun, observing regions of solar activity on the solar surface before they turn and face Earth.

Polarimeter to Unify the Corona and Heliosphere (PUNCH) is a future mission by NASA to study the unexplored region from the middle of the solar corona out to 1 AU from the Sun. PUNCH will consist of a constellation of four microsatellites that through continuous 3D deep-field imaging, will observe the corona and heliosphere as elements of a single, connected system. The four microsatellites were initially scheduled to be launched in October 2023, but they have since been moved to an April 2025 launch in rideshare with SPHEREx.

<span class="mw-page-title-main">Space Weather Follow On-Lagrange 1</span>

Space Weather Follow On-Lagrange 1 (SWFO-L1) is a future spacecraft mission planned to monitor signs of solar storms, which may pose harm to Earth's telecommunication network. The spacecraft will be operated by the National Oceanic and Atmospheric Administration (NOAA), with launch scheduled for 31 March 2025. It is planned to be placed at the Sun–Earth L1 Lagrange point, a location between the Earth and the Sun. This will allow SWFO-L1 to continuously watch the solar wind and energetic particles heading for Earth. SWFO-L1 is an ESPA Class Spacecraft, sized for launch on an Evolved Expendable Launch Vehicle Secondary Payload Adapter (ESPA) Grande ring in addition to the rocket's primary payload. The spacecraft's Solar Wind Instrument Suite (SWIS) which includes three instruments will monitor solar wind, and the Compact Coronagraph (CCOR) will monitor the Sun's surroundings to image coronal mass ejection (CME). A CME is a large outburst of plasma sent from the Sun towards interplanetary space.

References

  1. "Face to face with Sun-eclipsing Proba-3". ESA. 2 January 2024. Retrieved 2 January 2024.
  2. Arlanzón, Jesualdo (2020). "PROBA 3 Thermal Design and Analysis" (PDF). Retrieved 10 November 2021.
  3. Llorente, J. Salvatore; Agenjo, A.; Carrascosa, C.; de Negueruela, C.; Mestreau-Garreau, A.; Cropp, A.; Santovincenzo, A. (January 2013). "PROBA-3: Precise formation flying demonstration mission". Acta Astronautica . 82 (1). Elsevier: 38–46. Bibcode:2013AcAau..82...38L. doi:10.1016/j.actaastro.2012.05.029 . Retrieved 1 April 2021.
  4. 1 2 "Proba-3 Mission". ESA . Retrieved 6 March 2021.
  5. "Proba-3 Technologies". ESA . Retrieved 6 March 2021.
  6. "Proba-3 complete: Formation-flying satellites fully integrated". ESA . 27 March 2023. Retrieved 28 March 2023.
  7. "Proba-3 Platforms". ESA . Retrieved 6 March 2021.
  8. 1 2 Penin, Luis (1–6 August 2020). Proba-3: ESA's Small Satellites Precise Formation Flying Mission to Study the Sun's Inner Corona as Never Before. Small Satellite Conference 2020. Utah State University, Logan, UT: SmallSat.
  9. 1 2 3 "Sun Study: India to launch Europe's Proba-3 set to create artificial eclipse". The Times of India. 2024-01-05. ISSN   0971-8257 . Retrieved 2024-01-05.
  10. Galano, Damien (6 July 2018). Development of ASPIICS: a coronagraph based on Proba-3 formation flying mission. SPIE Astronomical Telescopes + Instrumentation, 2018. Austin, Texas, United States: Proceedings of the SPIE. doi:10.1117/12.2312493.
  11. Galy, C.; Thizy, C.; Stockman, Y.; Galano, D.; Rougeot, R.; Melich, R.; Shestov, S.; Landini, F.; Zukhov, A.; Kirschner, V.; Horodyska, P.; Fineschi, S. (6 July 2019). "Straylight analysis on ASPIICS, PROBA-3 coronagraph". Proceedings of the SPIE . 11180 (111802H): 29. Bibcode:2019SPIE11180E..2HG. doi: 10.1117/12.2536008 .
  12. 1 2 Zhukov, Andrei (22 November 2018). PROBA-3/ASPIICS and its potential synergies with Solar Orbiter/Metis (PDF). 6th Metis Workshop. Göttingen: Max Planck Institute for Solar System Research . Retrieved 13 October 2019.
  13. "ESA Bulletin 160 (November 2014)" (PDF). ESA. November 2014. p. 61. ISSN   0376-4265.
  14. "DARA Description". ESA . Retrieved 6 March 2021.
  15. "About Proba-3". ESA . Retrieved 23 November 2022.
  16. "SENER and ESA reach an agreement for the prime contractor role on phases C/D and E1 of the Proba 3 mission". SENER (Press release). 14 June 2014. Retrieved 6 March 2021.
  17. 1 2 "Proba-3 double-satellite nearer to space". ESA . 8 December 2014. Retrieved 6 March 2021.
  18. Parsonson, Andrew (29 March 2021). "ESA utilize longest corridor to test next-gen satellite technology". Rocket Rundown. Retrieved 1 April 2021.