Branches of physics

Last updated
Domains of major fields of physics Modernphysicsfields.svg
Domains of major fields of physics

Physics is a scientific discipline that seeks to construct and experimentally test theories of the physical universe. These theories vary in their scope and can be organized into several distinct branches, which are outlined in this article.

Contents

Classical mechanics

Classical mechanics is a model of the physics of forces acting upon bodies; includes sub-fields to describe the behaviors of solids, gases, and fluids. It is often referred to as "Newtonian mechanics" after Isaac Newton and his laws of motion. It also includes the classical approach as given by Hamiltonian and Lagrange methods. It deals with the motion of particles and the general system of particles.

There are many branches of classical mechanics, such as: statics, dynamics, kinematics, continuum mechanics (which includes fluid mechanics), statistical mechanics, etc.

Thermodynamics and statistical mechanics

The first chapter of The Feynman Lectures on Physics is about the existence of atoms, which Feynman considered to be the most compact statement of physics, from which science could easily result even if all other knowledge was lost. [1] By modeling matter as collections of hard spheres, it is possible to describe the kinetic theory of gases, upon which classical thermodynamics is based.

Thermodynamics studies the effects of changes in temperature, pressure, and volume on physical systems on the macroscopic scale, and the transfer of energy as heat. [2] [3] Historically, thermodynamics developed out of the desire to increase the efficiency of early steam engines. [4]

The starting point for most thermodynamic considerations is the laws of thermodynamics, which postulate that energy can be exchanged between physical systems as heat or work. [5] They also postulate the existence of a quantity named entropy, which can be defined for any system. [6] In thermodynamics, interactions between large ensembles of objects are studied and categorized. Central to this are the concepts of system and surroundings. A system is composed of particles, whose average motions define its properties, which in turn are related to one another through equations of state. Properties can be combined to express internal energy and thermodynamic potentials, which are useful for determining conditions for equilibrium and spontaneous processes.

Electromagnetism and photonics

Maxwell's equations of electromagnetism

The study of the behaviors of electrons, electric media, magnets, magnetic fields, and general interactions of light.

Relativistic mechanics

The special theory of relativity enjoys a relationship with electromagnetism and mechanics; that is, the principle of relativity and the principle of stationary action in mechanics can be used to derive Maxwell's equations, [7] [8] and vice versa.

The theory of special relativity was proposed in 1905 by Albert Einstein in his article "On the Electrodynamics of Moving Bodies". The title of the article refers to the fact that special relativity resolves an inconsistency between Maxwell's equations and classical mechanics. The theory is based on two postulates: (1) that the mathematical forms of the laws of physics are invariant in all inertial systems; and (2) that the speed of light in a vacuum is constant and independent of the source or observer. Reconciling the two postulates requires a unification of space and time into the frame-dependent concept of spacetime.

General relativity is the geometrical theory of gravitation published by Albert Einstein in 1915/16. [9] [10] It unifies special relativity, Newton's law of universal gravitation, and the insight that gravitation can be described by the curvature of space and time. In general relativity, the curvature of spacetime is produced by the energy of matter and radiation.

Quantum mechanics, atomic physics, and molecular physics

The first few hydrogen atom electron orbitals shown as cross-sections with color-coded probability density HAtomOrbitals.png
The first few hydrogen atom electron orbitals shown as cross-sections with color-coded probability density
Schrodinger equation of quantum mechanics SchrodingerEquation.svg
Schrödinger equation of quantum mechanics

Quantum mechanics is the branch of physics treating atomic and subatomic systems and their interaction based on the observation that all forms of energy are released in discrete units or bundles called "quanta". Remarkably, quantum theory typically permits only probable or statistical calculation of the observed features of subatomic particles, understood in terms of wave functions. The Schrödinger equation plays the role in quantum mechanics that Newton's laws and conservation of energy serve in classical mechanics—i.e., it predicts the future behavior of a dynamic system—and is a wave equation that is used to solve for wavefunctions.

For example, the light, or electromagnetic radiation emitted or absorbed by an atom has only certain frequencies (or wavelengths), as can be seen from the line spectrum associated with the chemical element represented by that atom. The quantum theory shows that those frequencies correspond to definite energies of the light quanta, or photons, and result from the fact that the electrons of the atom can have only certain allowed energy values, or levels; when an electron changes from one allowed level to another, a quantum of energy is emitted or absorbed whose frequency is directly proportional to the energy difference between the two levels. The photoelectric effect further confirmed the quantization of light.

In 1924, Louis de Broglie proposed that not only do light waves sometimes exhibit particle-like properties, but particles may also exhibit wave-like properties. Two different formulations of quantum mechanics were presented following de Broglie's suggestion. The wave mechanics of Erwin Schrödinger (1926) involves the use of a mathematical entity, the wave function, which is related to the probability of finding a particle at a given point in space. The matrix mechanics of Werner Heisenberg (1925) makes no mention of wave functions or similar concepts but was shown to be mathematically equivalent to Schrödinger's theory. A particularly important discovery of the quantum theory is the uncertainty principle, enunciated by Heisenberg in 1927, which places an absolute theoretical limit on the accuracy of certain measurements; as a result, the assumption by earlier scientists that the physical state of a system could be measured exactly and used to predict future states had to be abandoned. Quantum mechanics was combined with the theory of relativity in the formulation of Paul Dirac. Other developments include quantum statistics, quantum electrodynamics, concerned with interactions between charged particles and electromagnetic fields; and its generalization, quantum field theory.

String Theory

A possible candidate for the theory of everything, this theory combines the theory of general relativity and quantum mechanics to make a single theory. This theory can predict about properties of both small and big objects. This theory is currently under the developmental stage.

Optics and acoustics

Optics is the study of light motions including reflection, refraction, diffraction, and interference.

Acoustics is the branch of physics involving the study of mechanical waves in different mediums.

Condensed matter physics

The study of the physical properties of matter in a condensed phase.

High-energy particle physics and nuclear physics

Particle physics studies the nature of particles, while nuclear physics studies the atomic nuclei.

Cosmology

Cosmology studies how the universe came to be, and its eventual fate. It is studied by physicists and astrophysicists. It also studies about fictional universes people made, how the universes came to be, and their eventual fate and destruction.

Interdisciplinary fields

To the interdisciplinary fields, which define partially sciences of their own, belong e.g. the

Summary

The table below lists the core theories along with many of the concepts they employ.

TheoryMajor subtopicsConcepts
Classical mechanics Newton's laws of motion, Lagrangian mechanics, Hamiltonian mechanics, kinematics, statics, dynamics, chaos theory, acoustics, fluid dynamics, continuum mechanics Density, dimension, gravity, space, time, motion, length, position, velocity, acceleration, Galilean invariance, mass, momentum, impulse, force, energy, angular velocity, angular momentum, moment of inertia, torque, conservation law, harmonic oscillator, wave, work, power, Lagrangian, Hamiltonian, Tait–Bryan angles, Euler angles, pneumatic, hydraulic
Electromagnetism Electrostatics, electrodynamics, electricity, magnetism, magnetostatics, Maxwell's equations, optics Capacitance, electric charge, current, electrical conductivity, electric field, electric permittivity, electric potential, electrical resistance, electromagnetic field, electromagnetic induction, electromagnetic radiation, Gaussian surface, magnetic field, magnetic flux, magnetic monopole, magnetic permeability
Thermodynamics and statistical mechanics Heat engine, kinetic theory Boltzmann's constant, conjugate variables, enthalpy, entropy, equation of state, equipartition theorem, thermodynamic free energy, heat, ideal gas law, internal energy, laws of thermodynamics, Maxwell relations, irreversible process, Ising model, mechanical action, partition function, pressure, reversible process, spontaneous process, state function, statistical ensemble, temperature, thermodynamic equilibrium, thermodynamic potential, thermodynamic processes, thermodynamic state, thermodynamic system, viscosity, volume, work, granular material
Quantum mechanics Path integral formulation, scattering theory, Schrödinger equation, quantum field theory, quantum statistical mechanics Adiabatic approximation, black-body radiation, correspondence principle, free particle, Hamiltonian, Hilbert space, identical particles, matrix mechanics, Planck's constant, observer effect, operators, quanta, quantization, quantum entanglement, quantum harmonic oscillator, quantum number, quantum tunneling, Schrödinger's cat, Dirac equation, spin, wave function, wave mechanics, wave–particle duality, zero-point energy, Pauli exclusion principle, Heisenberg uncertainty principle
Relativity Special relativity, general relativity, Einstein field equations Covariance, Einstein manifold, equivalence principle, four-momentum, four-vector, general principle of relativity, geodesic motion, gravity, gravitoelectromagnetism, inertial frame of reference, invariance, length contraction, Lorentzian manifold, Lorentz transformation, mass–energy equivalence, metric, Minkowski diagram, Minkowski space, principle of relativity, proper length, proper time, reference frame, rest energy, rest mass, relativity of simultaneity, spacetime, special principle of relativity, speed of light, stress–energy tensor, time dilation, twin paradox, world line

Related Research Articles

<span class="mw-page-title-main">Force</span> Influence that can change motion of an object

In physics, a force is an influence that can cause an object to change its velocity, i.e., to accelerate, meaning a change in speed or direction, unless counterbalanced by other forces. The concept of force makes the everyday notion of pushing or pulling mathematically precise. Because the magnitude and direction of a force are both important, force is a vector quantity. The SI unit of force is the newton (N), and force is often represented by the symbol F.

In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity. In string theory, believed by some to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string.

<span class="mw-page-title-main">Physics</span> Scientific field of study

Physics is the natural science of matter, involving the study of matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. A scientist who specializes in the field of physics is called a physicist.

The following outline is provided as an overview of and topical guide to physics:

<span class="mw-page-title-main">Quantum mechanics</span> Description of physical properties at the atomic and subatomic scale

Quantum mechanics is a fundamental theory in physics that describes the behavior of nature at and below the scale of atoms. It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science.

<span class="mw-page-title-main">Mathematical physics</span> Application of mathematical methods to problems in physics

Mathematical physics refers to the development of mathematical methods for application to problems in physics. The Journal of Mathematical Physics defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics, known as physical mathematics.

Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena. The term law has diverse usage in many cases across all fields of natural science. Laws are developed from data and can be further developed through mathematics; in all cases they are directly or indirectly based on empirical evidence. It is generally understood that they implicitly reflect, though they do not explicitly assert, causal relationships fundamental to reality, and are discovered rather than invented.

<span class="mw-page-title-main">Introduction to gauge theory</span> Introductory article

A gauge theory is a type of theory in physics. The word gauge means a measurement, a thickness, an in-between distance, or a resulting number of units per certain parameter. Modern theories describe physical forces in terms of fields, e.g., the electromagnetic field, the gravitational field, and fields that describe forces between the elementary particles. A general feature of these field theories is that the fundamental fields cannot be directly measured; however, some associated quantities can be measured, such as charges, energies, and velocities. For example, say you cannot measure the diameter of a lead ball, but you can determine how many lead balls, which are equal in every way, are required to make a pound. Using the number of balls, the density of lead, and the formula for calculating the volume of a sphere from its diameter, one could indirectly determine the diameter of a single lead ball.

In physics, action at a distance is the concept that an object's motion can be affected by another object without being in physical contact with it; that is, the non-local interaction of objects that are separated in space. Coulomb's law and Newton's law of universal gravitation are based on action at a distance.

In theoretical physics and applied mathematics, a field equation is a partial differential equation which determines the dynamics of a physical field, specifically the time evolution and spatial distribution of the field. The solutions to the equation are mathematical functions which correspond directly to the field, as functions of time and space. Since the field equation is a partial differential equation, there are families of solutions which represent a variety of physical possibilities. Usually, there is not just a single equation, but a set of coupled equations which must be solved simultaneously. Field equations are not ordinary differential equations since a field depends on space and time, which requires at least two variables.

<span class="mw-page-title-main">History of quantum field theory</span>

In particle physics, the history of quantum field theory starts with its creation by Paul Dirac, when he attempted to quantize the electromagnetic field in the late 1920s. Major advances in the theory were made in the 1940s and 1950s, leading to the introduction of renormalized quantum electrodynamics (QED). The field theory behind QED was so accurate and successful in predictions that efforts were made to apply the same basic concepts for the other forces of nature. Beginning in 1954, the parallel was found by way of gauge theory, leading by the late 1970s, to quantum field models of strong nuclear force and weak nuclear force, united in the modern Standard Model of particle physics.

Quantum mechanics is the study of matter and its interactions with energy on the scale of atomic and subatomic particles. By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to a revolution in physics, a shift in the original scientific paradigm: the development of quantum mechanics.

The Wheeler–Feynman absorber theory, named after its originators, the physicists, Richard Feynman, and John Archibald Wheeler, is a theory of electrodynamics based on a relativistic correct extension of action at a distance electron particles. The theory postulates no independent electromagnetic field. Rather, the whole theory is encapsulated by the Lorentz-invariant action of particle trajectories defined as

This timeline lists significant discoveries in physics and the laws of nature, including experimental discoveries, theoretical proposals that were confirmed experimentally, and theories that have significantly influenced current thinking in modern physics. Such discoveries are often a multi-step, multi-person process. Multiple discovery sometimes occurs when multiple research groups discover the same phenomenon at about the same time, and scientific priority is often disputed. The listings below include some of the most significant people and ideas by date of publication or experiment.

<span class="mw-page-title-main">Classical mechanics</span> Description of large objects physics

Classical mechanics is a physical theory describing the motion of objects such as projectiles, parts of machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics involved substantial change in the methods and philosophy of physics. The qualifier classical distinguishes this type of mechanics from physics developed after the revolutions in physics of the early 20th century, all of which revealed limitations in classical mechanics.

<span class="mw-page-title-main">Theoretical physics</span> Branch of physics

Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.

<span class="mw-page-title-main">Field (physics)</span> Physical quantities taking values at each point in space and time

In physics, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. For example, on a weather map, the surface temperature is described by assigning a number to each point on the map; the temperature can be considered at a certain point in time or over some interval of time, to study the dynamics of temperature change. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.e. a 1-dimensional (rank-1) tensor field. Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, while electrodynamics can be formulated in terms of two interacting vector fields at each point in spacetime, or as a single-rank 2-tensor field.

<i>The Feynman Lectures on Physics</i> Textbook by Richard Feynman

The Feynman Lectures on Physics is a physics textbook based on a great number of lectures by Richard Feynman, a Nobel laureate who has sometimes been called "The Great Explainer". The lectures were presented before undergraduate students at the California Institute of Technology (Caltech), during 1961–1963. The book's co-authors are Feynman, Robert B. Leighton, and Matthew Sands.

This glossary of physics is a list of definitions of terms and concepts relevant to physics, its sub-disciplines, and related fields, including mechanics, materials science, nuclear physics, particle physics, and thermodynamics. For more inclusive glossaries concerning related fields of science and technology, see Glossary of chemistry terms, Glossary of astronomy, Glossary of areas of mathematics, and Glossary of engineering.

A hallmark of Albert Einstein's career was his use of visualized thought experiments as a fundamental tool for understanding physical issues and for elucidating his concepts to others. Einstein's thought experiments took diverse forms. In his youth, he mentally chased beams of light. For special relativity, he employed moving trains and flashes of lightning to explain his most penetrating insights. For general relativity, he considered a person falling off a roof, accelerating elevators, blind beetles crawling on curved surfaces and the like. In his debates with Niels Bohr on the nature of reality, he proposed imaginary devices intended to show, at least in concept, how the Heisenberg uncertainty principle might be evaded. In a profound contribution to the literature on quantum mechanics, Einstein considered two particles briefly interacting and then flying apart so that their states are correlated, anticipating the phenomenon known as quantum entanglement.

References

  1. Feynman, Richard Phillips; Leighton, Robert Benjamin; Sands, Matthew Linzee (1963). The Feynman Lectures on Physics. p.  1. ISBN   978-0-201-02116-5.. Feynman begins with the atomic hypothesis, as his most compact statement of all scientific knowledge: "If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generations ..., what statement would contain the most information in the fewest words? I believe it is ... that all things are made up of atoms – little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another. ..." vol. I p. I–2
  2. Perot, Pierre (1998). A to Z of Thermodynamics. Oxford University Press. ISBN   978-0-19-856552-9.
  3. Clark, John O.E. (2004). The Essential Dictionary of Science. Barnes & Noble Books. ISBN   978-0-7607-4616-5.
  4. Clausius, Rudolf (1850). "LXXIX". On the Motive Power of Heat, and on the Laws which can be deduced from it for the Theory of Heat. Dover Reprint. ISBN   978-0-486-59065-3.[ clarification needed ]
  5. Van Ness, H.C. (1969). Understanding Thermodynamics . Dover Publications, Inc. ISBN   978-0-486-63277-3.
  6. Dugdale, J. S. (1998). Entropy and its Physical Meaning. Taylor and Francis. ISBN   978-0-7484-0569-5.
  7. Landau and Lifshitz (1951, 1962), The Classical Theory of Fields, Library of Congress Card Number 62-9181, Chapters 1–4 (3rd edition is ISBN   0-08-016019-0)
  8. Corson and Lorrain, Electromagnetic Fields and Waves ISBN   0-7167-1823-5
  9. Einstein, Albert (November 25, 1915). "Die Feldgleichungen der Gravitation". Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin: 844–847. Archived from the original on 2016-10-27. Retrieved 2006-09-12.
  10. Einstein, Albert (1916). "The Foundation of the General Theory of Relativity". Annalen der Physik. 354 (7): 769–822. Bibcode:1916AnP...354..769E. doi:10.1002/andp.19163540702. Archived from the original (PDF) on 2006-08-29. Retrieved 2006-09-03.