Linear induction motor

Last updated
A typical 3 phase linear induction motor. The "primary" core (grey) has grooves, and the windings are laid into them on top of each other. An aluminium plate above (not shown) serves as "secondary" and will move relative to the primary if a 3 phase AC is applied. Three phase linear induction motor.gif
A typical 3 phase linear induction motor. The "primary" core (grey) has grooves, and the windings are laid into them on top of each other. An aluminium plate above (not shown) serves as "secondary" and will move relative to the primary if a 3 phase AC is applied.
A transverse flux linear induction motor (here the primary is at top of picture) and has two sets of opposite poles side by side. (Picture from US Patent 3824414 by Eric Laithwaite) Linear induction motor.gif
A transverse flux linear induction motor (here the primary is at top of picture) and has two sets of opposite poles side by side. (Picture from US Patent 3824414 by Eric Laithwaite)

A linear induction motor (LIM) is an alternating current (AC), asynchronous linear motor that works by the same general principles as other induction motors but is typically designed to directly produce motion in a straight line. Characteristically, linear induction motors have a finite primary or secondary length, which generates end-effects, whereas a conventional induction motor is arranged in an endless loop. [1]

Contents

Despite their name, not all linear induction motors produce linear motion; some linear induction motors are employed for generating rotations of large diameters where the use of a continuous primary would be very expensive.

As with rotary motors, linear motors frequently run on a three-phase power supply and can support very high speeds. However, there are end-effects that reduce the motor's force, and it is often not possible to fit a gearbox to trade off force and speed. Linear induction motors are thus frequently less energy efficient than normal rotary motors for any given required force output.

LIMs, unlike their rotary counterparts, can give a levitation effect. They are therefore often used where contactless force is required, where low maintenance is desirable, or where the duty cycle is low. Their practical uses include magnetic levitation, linear propulsion, and linear actuators. They have also been used for pumping liquid metals. [2]

History

The history of linear electric motors can be traced back at least as far as the 1840s to the work of Charles Wheatstone at King's College in London, [3] but Wheatstone's model was too inefficient to be practical. A feasible linear induction motor is described in US patent 782312 (1905; inventor Alfred Zehden of Frankfurt-am-Main), and is for driving trains or lifts. German engineer Hermann Kemper built a working model in 1935. [4] In the late 1940s, professor Eric Laithwaite of Imperial College in London developed the first full-size working model.

FEMM simulation of a Cross-section of Magnetic River, coloured by electric current density Magnetic river 3.png
FEMM simulation of a Cross-section of Magnetic River, coloured by electric current density

In a single-sided version, the magnetic field can create repulsion forces that push the conductor away from the stator, levitating it and carrying it along the direction of the moving magnetic field. Laithwaite called the later versions a magnetic river. These versions of the linear induction motor use a principle called transverse flux where two opposite poles are placed side by side. This permits very long poles to be used, and thus permits high speed and efficiency. [5]

Construction

A linear electric motor's primary typically consists of a flat magnetic core (generally laminated) with transverse slots that are often straight cut [6] with coils laid into the slots, with each phase giving an alternating polarity so that the different phases physically overlap.

The secondary is frequently a sheet of aluminium, often with an iron backing plate. Some LIMs are double sided with one primary on each side of the secondary, and, in this case, no iron backing is needed.

Two types of linear motor exist: a short primary, where the coils are truncated shorter than the secondary, and a short secondary, where the conductive plate is smaller. Short secondary LIMs are often wound as parallel connections between coils of the same phase, whereas short primaries are usually wound in series. [7]

The primaries of transverse flux LIMs have a series of twin poles lying transversely side-by-side with opposite winding directions. These poles are typically made either with a suitably cut laminated backing plate or a series of transverse U-cores.

Principles

The magnetic field of a linear motor sweeping to the left, past an aluminium block. Coloured by induced electric current. Linear motor field.gif
The magnetic field of a linear motor sweeping to the left, past an aluminium block. Coloured by induced electric current.

In this electric motor design, the force is produced by a linearly moving magnetic field acting on conductors in the field. Any conductor, be it a loop, a coil, or simply a piece of plate metal, that is placed in this field will have eddy currents induced in it thus creating an opposing magnetic field in accordance with Lenz's law. The two opposing fields will repel each other, creating motion as the magnetic field sweeps through the metal.

[8]

where fs is supply frequency in Hz, p is the number of poles, and ns is the synchronous speed of the magnetic field in revolutions per second.

The travelling field pattern has a velocity of:

[8]

where vs is velocity of the linear travelling field in m/s, and t is the pole pitch.

For a slip of s, the speed of the secondary in a linear motor is given by

[8]

Forces

Thrust

Thrust generated as a function of slip Couple glissement MAs.svg
Thrust generated as a function of slip

The drive generated by linear induction motors is somewhat similar to conventional induction motors; the drive forces show a roughly similar characteristic shape relative to slip, albeit modulated by end effects. [9]

Equations exist for calculating the thrust of a motor. [10]

End effect

Unlike a circular induction motor, a linear induction motor shows 'end effects'. These end effects include losses in performance and efficiency that are believed to be caused by magnetic energy being carried away and lost at the end of the primary by the relative movement of the primary and secondary.

With a short secondary, the behaviour is almost identical to a rotary machine, provided it is at least two poles long but with a short primary reduction in thrust that occurs at low slip (below about 0.3) until it is eight poles or longer. [7]

However, because of end effects, linear motors cannot 'run light' -- normal induction motors are able to run the motor with a near synchronous field under low load conditions. In contrast, end effects create much more significant losses with linear motors. [7]

Levitation

Levitation and thrust force curves of a linear motor Linear motor torque curve.png
Levitation and thrust force curves of a linear motor

In addition, unlike a rotary motor, an electrodynamic levitation force is shown, this is zero at zero slip, and gives a roughly constant amount of force/gap as slip increases in either direction. This occurs in single sided motors, and levitation will not usually occur when an iron backing plate is used on the secondary, since this causes an attraction that overwhelms the lifting force. [9]

Performance

Linear induction motors are often less efficient than conventional rotary induction motors; the end effects and the relatively large air gap that is often present will typically reduce the forces produced for the same electrical power. [1] Similarly, the efficiency during generator operation (electric braking/recuperating) with a linear induction motor was reported as relatively low due to end effects. [11] The larger air gap also increases the inductance of the motor which can require larger and more expensive capacitors.

However, linear induction motors can avoid the need for gearboxes and similar drivetrains, and these have their own losses; and working knowledge of the importance of the goodness factor can minimise the effects of the larger air gap. In any case power use is not always the most important consideration. For example, in many cases linear induction motors have far fewer moving parts, and have very low maintenance. Also, using linear induction motors instead of rotating motors with rotary-to-linear transmissions in motion control systems, enables higher bandwidth and accuracy of the control system, because rotary-to-linear transmissions introduce backlash, static friction and/or mechanical compliance in the control system.

Uses

LIMTV Linear Induction Motor Test Vehicle in 1973 LIMTV testing at DoT Pueblo test facility.tiff
LIMTV Linear Induction Motor Test Vehicle in 1973

Because of these properties, linear motors are often used in maglev propulsion, as in the Japanese Linimo magnetic levitation train line near Nagoya.

The Birmingham Airport Maglev shuttle Birmingham International Maglev.jpg
The Birmingham Airport Maglev shuttle

The world's first commercial automated maglev system was a low-speed maglev shuttle that ran from the airport terminal of Birmingham Airport to the nearby Birmingham International railway station between 1984–1995. [12] The length of the track was 600 metres (2,000 ft), and trains "flew" at an altitude of 15 millimetres (0.59 in), levitated by electromagnets, and propelled with linear induction motors. [13] It was in operation for nearly eleven years, but obsolescence problems with the electronic systems made it unreliable in its later years. One of the original cars is now on display at Railworld in Peterborough, together with the RTV31 hover train vehicle. [14]

However, linear motors have been used independently of magnetic levitation, such as Tokyo's Toei Ōedo Line. The Bombardier Innovia Metro is an example of an automated system that utilizes LIM propulsion. The longest rapid transit system employing such technology is the Guangzhou Metro, with approximately 130 km (81 mi) of route using LIM propelled subway trains along Line 4, Line 5 and Line 6. They're also used by Tomorrowland Transit Authority PeopleMover at Walt Disney World Resort in Bay Lake, Florida and in the Subway people mover at George Bush Intercontinental Airport in Houston, Texas, which use the same design.

Linear induction motor technology is also used in some launched roller coasters. At present it is still impractical on street running trams, although this, in theory, could be done by burying it in a slotted conduit.

AirTrain JFK trains propel themselves using an aluminium induction strip placed between the rails. JFK AirTrain.agr.jpg
AirTrain JFK trains propel themselves using an aluminium induction strip placed between the rails.

Outside of public transportation, vertical linear motors have been proposed as lifting mechanisms in deep mines, and the use of linear motors is growing in motion control applications. They are also often used on sliding doors, such as those of low floor trams such as the Alstom Citadis and the Eurotram.

Dual axis linear motors also exist. These specialized devices have been used to provide direct X-Y motion for precision laser cutting of cloth and sheet metal, automated drafting, and cable forming. Also, linear induction motors with a cylindrical secondary have been used to provide simultaneous linear and rotating motion for mounting electronic devices on printed circuit boards. [15]

Most linear motors in use are LIM (linear induction motors) or LSM (linear synchronous motors). Linear DC motors are not used as it includes more cost and linear SRM suffers from poor thrust. So for long run in traction LIM is mostly preferred and for short run LSM is mostly preferred.

A diagram of EMALS' induction motor EMALS.JPG
A diagram of EMALS' induction motor

Linear induction motors have also been used for launching aircraft, the Westinghouse Electropult [7] system in 1945 was an early example and the Electromagnetic Aircraft Launch System (EMALS) was due to be delivered in 2010.

Linear induction motors are also used in looms, magnetic levitation enable bobbins to float between the fibers without direct contact.

The first ropeless elevator invented by ThyssenKrupp uses a linear induction drive power. [16]

See also

Related Research Articles

<span class="mw-page-title-main">Linear motor</span> Electric motor that produces a linear force

A linear motor is an electric motor that has had its stator and rotor "unrolled", thus, instead of producing a torque (rotation), it produces a linear force along its length. However, linear motors are not necessarily straight. Characteristically, a linear motor's active section has ends, whereas more conventional motors are arranged as a continuous loop.

<span class="mw-page-title-main">Electric motor</span> Machine that converts electrical energy into mechanical energy

An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates with a reversed flow of power, converting mechanical energy into electrical energy.

<span class="mw-page-title-main">Induction motor</span> Type of AC electric motor

An induction motor or asynchronous motor is an AC electric motor in which the electric current in the rotor needed to produce torque is obtained by electromagnetic induction from the magnetic field of the stator winding. An induction motor can therefore be made without electrical connections to the rotor. An induction motor's rotor can be either wound type or squirrel-cage type.

Eric Roberts Laithwaite was a British electrical engineer, known as the "Father of Maglev" for his development of the linear induction motor and maglev rail system.

<span class="mw-page-title-main">Synchronous motor</span> Type of AC motor

A synchronous electric motor is an AC electric motor in which, at steady state, the rotation of the shaft is synchronized with the frequency of the supply current; the rotation period is exactly equal to an integral number of AC cycles. Synchronous motors contain multiphase AC electromagnets on the stator of the motor that create a magnetic field which rotates in time with the oscillations of the line current. The rotor with permanent magnets or electromagnets turns in step with the stator field at the same rate and as a result, provides the second synchronized rotating magnet field of any AC motor. A synchronous motor is termed doubly fed if it is supplied with independently excited multiphase AC electromagnets on both the rotor and stator.

<span class="mw-page-title-main">Electrodynamic suspension</span> Magnetic levitation by time-varying fields

Electrodynamic suspension (EDS) is a form of magnetic levitation in which there are conductors which are exposed to time-varying magnetic fields. This induces eddy currents in the conductors that creates a repulsive magnetic field which holds the two objects apart.

Electromagnetic propulsion (EMP) is the principle of accelerating an object by the utilization of a flowing electrical current and magnetic fields. The electrical current is used to either create an opposing magnetic field, or to charge a field, which can then be repelled. When a current flows through a conductor in a magnetic field, an electromagnetic force known as a Lorentz force, pushes the conductor in a direction perpendicular to the conductor and the magnetic field. This repulsing force is what causes propulsion in a system designed to take advantage of the phenomenon. The term electromagnetic propulsion (EMP) can be described by its individual components: electromagnetic – using electricity to create a magnetic field, and propulsion – the process of propelling something. When a fluid is employed as the moving conductor, the propulsion may be termed magnetohydrodynamic drive. One key difference between EMP and propulsion achieved by electric motors is that the electrical energy used for EMP is not used to produce rotational energy for motion; though both use magnetic fields and a flowing electrical current.

<span class="mw-page-title-main">Maglev</span> Train system using magnetic levitation

Maglev, is a system of train transportation that uses two sets of electromagnets: one set to repel and push the train up off the track, and another set to move the elevated train ahead, taking advantage of the lack of friction. Such trains rise approximately 10 centimetres (3.9 in) off the track. There are both high speed, intercity maglev systems, and low speed, urban maglev systems being built and under construction and development.

<span class="mw-page-title-main">Squirrel-cage rotor</span> Rotating part of the common squirrel-cage induction motor

A squirrel-cage rotor is the rotating part of the common squirrel-cage induction motor. It consists of a cylinder of steel laminations, with aluminum or copper conductors embedded in its surface. In operation, the non-rotating stator winding is connected to an alternating current power source; the alternating current in the stator produces a rotating magnetic field. The rotor winding has current induced in it by the stator field, like a transformer except that the current in the rotor is varying at the stator field rotation rate minus the physical rotation rate. The interaction of the magnetic fields of currents in the stator and rotor produce a torque on the rotor.

<span class="mw-page-title-main">Electromagnetic suspension</span>

Electromagnetic suspension (EMS) is the magnetic levitation of an object achieved by constantly altering the strength of a magnetic field produced by electromagnets using a feedback loop. In most cases the levitation effect is mostly due to permanent magnets as they don't have any power dissipation, with electromagnets only used to stabilize the effect.

<span class="mw-page-title-main">AC motor</span> Electric motor driven by an AC electrical input

An AC motor is an electric motor driven by an alternating current (AC). The AC motor commonly consists of two basic parts, an outside stator having coils supplied with alternating current to produce a rotating magnetic field, and an inside rotor attached to the output shaft producing a second rotating magnetic field. The rotor magnetic field may be produced by permanent magnets, reluctance saliency, or DC or AC electrical windings.

Magnetic propulsion may refer to:

<span class="mw-page-title-main">Rotor (electric)</span> Non-stationary part of a rotary electric motor

The rotor is a moving component of an electromagnetic system in the electric motor, electric generator, or alternator. Its rotation is due to the interaction between the windings and magnetic fields which produces a torque around the rotor's axis.

<span class="mw-page-title-main">Dynamo</span> Electrical generator that produces direct current with the use of a commutator

A dynamo is an electrical generator that creates direct current using a commutator. Dynamos were the first electrical generators capable of delivering power for industry, and the foundation upon which many other later electric-power conversion devices were based, including the electric motor, the alternating-current alternator, and the rotary converter.

In electrical engineering, electric machine is a general term for machines using electromagnetic forces, such as electric motors, electric generators, and others. They are electromechanical energy converters: an electric motor converts electricity to mechanical power while an electric generator converts mechanical power to electricity. The moving parts in a machine can be rotating or linear. Besides motors and generators, a third category often included is transformers, which although they do not have any moving parts are also energy converters, changing the voltage level of an alternating current.

<span class="mw-page-title-main">Tracked Hovercraft</span>

Tracked Hovercraft was an experimental high speed train developed in the United Kingdom during the 1960s. It combined two British inventions, the hovercraft and linear induction motor, in an effort to produce a train system that would provide 250 mph (400 km/h) inter-city service with lowered capital costs compared to other high-speed solutions. Substantially similar to the French Aérotrain and other hovertrain systems of the 1960s, Tracked Hovercraft suffered a similar fate to these projects when it was cancelled as a part of wide budget cuts in 1973.

<span class="mw-page-title-main">Incheon Airport Maglev</span> Maglev line at Incheon Airport, South Korea

The Incheon Airport Maglev is a maglev line in South Korea opened on 3 February 2016. It is the world's second commercially operating unmanned urban maglev line after Japan's Linimo. The trains are lighter, cutting construction costs in half. The majority of construction was completed by November 2012.

Magnetic river is an electrodynamic magnetic levitation (maglev) system designed by Fredrick Eastham and Eric Laithwaite in 1974. It consists of a thin conductive plate on an AC linear induction motor. Due to the transverse flux and the geometry, this gives it lift, stability and propulsion as well as being relatively efficient. The name refers to the action that provides stability along the longitudinal axis, which acts similar to the flow of water in a river.

<span class="mw-page-title-main">Magnetic levitation</span> Method by which an object is suspended with no support other than magnetic fields

Magnetic levitation (maglev) or magnetic suspension is a method by which an object is suspended with no support other than magnetic fields. Magnetic force is used to counteract the effects of the gravitational force and any other forces.

References

  1. 1 2 Ghaseminejad Liasi, Sahand (15 May 2015). "What are linear motors?": 1–50. doi:10.13140/RG.2.2.16250.18887 . Retrieved 24 December 2017.{{cite journal}}: Cite journal requires |journal= (help)
  2. Inc, Educational Foundation for Nuclear Science (1 September 1973). "Bulletin of the Atomic Scientists". Educational Foundation for Nuclear Science, Inc. via Google Books.
  3. "Charles Wheatstone - College History - King's College London". Kcl.ac.uk. Archived from the original on October 21, 2009. Retrieved 2010-03-01.
  4. "CEM - Fall/Winter 1997 Issue - Germany's Transrapid". Archived from the original on 2011-09-28. Retrieved 2011-08-24.
  5. Patent number 3585423, 1971 Laithwaite et al
  6. [ permanent dead link ]
  7. 1 2 3 4 linear Electric Machines- A Personal View ERIC R. LAITHWAITE, FELLOW, IEEE, PROCEEDINGS OF THE IEEE, VOL. 63, NO. 2, FEBRUARY 1975
  8. 1 2 3 "Linear Induction Motor : Working, Application and Construction". sunilsaharan.in.
  9. 1 2 Force Analysis of Linear Induction Motor for Magnetic Levitation System 14th International Power Electronics and Motion Control Conference, EPE-PEMC 2010
  10. Journal of Modern Transportation June 2012, Volume 20, Issue 2, pp 76–81 A novel method to calculate the thrust of linear induction motor based on instantaneous current value
  11. Flankl, Michael; Tuysuz, Arda; de Oliveira Baumann, Lukas; Kolar, Johann W. (2019). "Energy Harvesting with Single-Sided Linear Induction Machines featuring Secondary Conductive Coating" (PDF). IEEE Transactions on Industrial Electronics. 66 (6): 4880–4890. doi:10.1109/TIE.2018.2821637. S2CID   53447221 . Retrieved 4 April 2018.
  12. "The magnetic attraction of trains". BBC News . 9 November 1999.
  13. Maglev, A film for The People Mover Group
  14. A Maglev unit for Railworld Rail issue 425 26 December 2001 page 65
  15. Mechatronic design of a z-φ induction actuator, P. de Wit, J. van Dijk, T. Blomer, and P. Rutgers, proc. of IEE EMD '97 Conference. Cambridge 1997. pp. 279-283, 1-3 Sept. 1997
  16. Miley, Jessica (2017-06-26). "The World's First Ropeless Multi-Directional Elevator Will Be Installed in Berlin". Interesting Engineering.