Acetergamine

Last updated
Acetergamine
Acetergamine.svg
Names
Systematic IUPAC name
N-{[(8β)-6-Methylergolin-8-yl]methyl}acetamide
Other names
8β-acetylaminomethyl-6-methylergoline
(+)-N-Acetyl-9,10-dihydrolysergamine
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.019.281 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C18H23N3O/c1-11(22)19-8-12-6-15-14-4-3-5-16-18(14)13(9-20-16)7-17(15)21(2)10-12/h3-5,9,12,15,17,20H,6-8,10H2,1-2H3,(H,19,22)/t12-,15+,17+/m0/s1
    Key: SGZVEWGAZGOWGP-XGWLTEMNSA-N
  • O=C(NC[C@@H]2C[C@@H]3c4cccc1c4c(c[nH]1)C[C@H]3N(C2)C)C
Properties
C18H23N3O
Molar mass 297.402 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Acetergamine is an organic chemical compound; specifically it is a derivative of ergoline, making it a member of the ergotamine family of compounds. Acetergamine currently has no mainstream uses, however its potential as an alpha-1 blocker and vasodilator has led to it being covered in several patents concerning therapies for erectile dysfunction. It has also been investigated as a treatment for cerebellar ataxia. [1]

Related Research Articles

Ataxia is a neurological sign consisting of lack of voluntary coordination of muscle movements that can include gait abnormality, speech changes, and abnormalities in eye movements, that indicates dysfunction of parts of the nervous system that coordinate movement, such as the cerebellum.

<span class="mw-page-title-main">Cerebellar hypoplasia</span> Medical condition

Cerebellar hypoplasia is characterized by reduced cerebellar volume, even though cerebellar shape is (near) normal. It consists of a heterogeneous group of disorders of cerebellar maldevelopment presenting as early-onset non–progressive congenital ataxia, hypotonia and motor learning disability.

Ataxia–telangiectasia, also referred to as ataxia–telangiectasia syndrome or Louis–Bar syndrome, is a rare, neurodegenerative disease causing severe disability. Ataxia refers to poor coordination and telangiectasia to small dilated blood vessels, both of which are hallmarks of the disease. A–T affects many parts of the body:

<span class="mw-page-title-main">Olivopontocerebellar atrophy</span> Medical condition

Olivopontocerebellar atrophy (OPCA) is the degeneration of neurons in specific areas of the brain – the cerebellum, pons, and inferior olivary nucleus. OPCA is present in several neurodegenerative syndromes, including inherited and non-inherited forms of ataxia and multiple system atrophy (MSA), with which it is primarily associated.

<span class="mw-page-title-main">Spinocerebellar ataxia</span> Medical condition

Spinocerebellar ataxia (SCA) is a progressive, degenerative, genetic disease with multiple types, each of which could be considered a neurological condition in its own right. An estimated 150,000 people in the United States have a diagnosis of spinocerebellar ataxia at any given time. SCA is hereditary, progressive, degenerative, and often fatal. There is no known effective treatment or cure. SCA can affect anyone of any age. The disease is caused by either a recessive or dominant gene. In many cases people are not aware that they carry a relevant gene until they have children who begin to show signs of having the disorder.

<span class="mw-page-title-main">Purkinje cell</span> Specialized neuron in the cerebellum

Purkinje cells or Purkinje neurons, named for Czech physiologist Jan Evangelista Purkyně who identified them in 1837, are a unique type of prominent large neurons located in the cerebellar cortex of the brain. With their flask-shaped cell bodies, many branching dendrites, and a single long axon, these cells are essential for controlling motor activity. Purkinje cells mainly release GABA neurotransmitter, which inhibits some neurons to reduce nerve impulse transmission. Purkinje cells efficiently control and coordinate the body's motor motions through these inhibitory actions.

Dysmetria is a lack of coordination of movement typified by the undershoot or overshoot of intended position with the hand, arm, leg, or eye. It is a type of ataxia. It can also include an inability to judge distance or scale.

Dysdiadochokinesia (DDK) is the medical term for an impaired ability to perform rapid, alternating movements. Complete inability is called adiadochokinesia. The term is from Greek δυςdys "bad", διάδοχοςdiadochos "working in turn", κίνησιςkinesis "movement".

Cerebellar ataxia is a form of ataxia originating in the cerebellum. Non-progressive congenital ataxia (NPCA) is a classical presentation of cerebral ataxias.

Intention tremor is a dyskinetic disorder characterized by a broad, coarse, and low-frequency tremor evident during deliberate and visually-guided movement. An intention tremor is usually perpendicular to the direction of movement. When experiencing an intention tremor, one often overshoots or undershoots one's target, a condition known as dysmetria. Intention tremor is the result of dysfunction of the cerebellum, particularly on the same side as the tremor in the lateral zone, which controls visually guided movements. Depending on the location of cerebellar damage, these tremors can be either unilateral or bilateral.

Paraneoplastic cerebellar degeneration (PCD) is a paraneoplastic syndrome associated with a broad variety of tumors including lung cancer, ovarian cancer, breast cancer, Hodgkin’s lymphoma and others. PCD is a rare condition that occurs in less than 1% of cancer patients.

<span class="mw-page-title-main">Spinocerebellar ataxia type 6</span> Medical condition

Spinocerebellar ataxia type 6 (SCA6) is a rare, late-onset, autosomal dominant disorder, which, like other types of SCA, is characterized by dysarthria, oculomotor disorders, peripheral neuropathy, and ataxia of the gait, stance, and limbs due to cerebellar dysfunction. Unlike other types, SCA 6 is not fatal. This cerebellar function is permanent and progressive, differentiating it from episodic ataxia type 2 (EA2) where said dysfunction is episodic. In some SCA6 families, some members show these classic signs of SCA6 while others show signs more similar to EA2, suggesting that there is some phenotypic overlap between the two disorders. SCA6 is caused by mutations in CACNA1A, a gene encoding a calcium channel α subunit. These mutations tend to be trinucleotide repeats of CAG, leading to the production of mutant proteins containing stretches of 20 or more consecutive glutamine residues; these proteins have an increased tendency to form intracellular agglomerations. Unlike many other polyglutamine expansion disorders expansion length is not a determining factor for the age that symptoms present.

Benedikt syndrome, also called Benedikt's syndrome or paramedian midbrain syndrome, is a rare type of posterior circulation stroke of the brain, with a range of neurological symptoms affecting the midbrain, cerebellum and other related structures.

<span class="mw-page-title-main">Dyschronometria</span> Inability to estimate amount of time that has passed

Dyschronometria is a condition of cerebellar dysfunction in which an individual cannot accurately estimate the amount of time that has passed. It is associated with cerebellar ataxia, when the cerebellum has been damaged and does not function to its fullest ability. Lesions to the cerebellum can cause dyssynergia, dysmetria, dysdiadochokinesia, dysarthria, and ataxia of stance and gait. Dyschronometria can result from autosomal dominant cerebellar ataxia (ADCA).

Acute cerebellar ataxia of childhood is a childhood condition characterized by an unsteady gait, most likely secondary to an autoimmune response to infection, drug induced or paraneoplastic. The most common viruses causing acute cerebellar ataxia are chickenpox virus and Epstein–Barr virus, leading to a childhood form of post viral cerebellar ataxia. It is a diagnosis of exclusion.

Bruns apraxia, or frontal ataxia, is a gait apraxia found in patients with bilateral frontal lobe disorders. It is characterised by an inability to initiate the process of walking, despite the power and coordination of the legs being normal when tested in the seated or lying position. The gait is broad-based with short steps with a tendency to fall backwards. It was originally described in patients with frontal lobe tumours, but is now more commonly seen in patients with cerebrovascular disease.

<span class="mw-page-title-main">Post-viral cerebellar ataxia</span> Medical condition

Post-viral cerebellar ataxia also known as acute cerebellitis and acute cerebellar ataxia (ACA) is a disease characterized by the sudden onset of ataxia following a viral infection. The disease affects the function or structure of the cerebellum region in the brain.

<span class="mw-page-title-main">Autosomal dominant cerebellar ataxia</span> Medical condition

Autosomal dominant cerebellar ataxia (ADCA) is a form of spinocerebellar ataxia inherited in an autosomal dominant manner. ADCA is a genetically inherited condition that causes deterioration of the nervous system leading to disorder and a decrease or loss of function to regions of the body.

<span class="mw-page-title-main">Spinocerebellar ataxia type 1</span> Rare neurodegenerative disorder

Spinocerebellar ataxia type 1 (SCA1) is a rare autosomal dominant disorder, which, like other spinocerebellar ataxias, is characterized by neurological symptoms including dysarthria, hypermetric saccades, and ataxia of gait and stance. This cerebellar dysfunction is progressive and permanent. First onset of symptoms is normally between 30 and 40 years of age, though juvenile onset can occur. Death typically occurs within 10 to 30 years from onset.

<span class="mw-page-title-main">Truncal ataxia</span> Wide-based "drunken sailor" gait symptom

Truncal ataxia is a wide-based "drunken sailor" gait characterised by uncertain starts and stops, lateral deviations and unequal steps. It is an instability of the trunk and often seen during sitting. It is most visible when shifting position or walking heel-to-toe.

References

  1. Ogawa, M (2004). "Pharmacological treatments of cerebellar ataxia". Cerebellum. London). 3 (2): 107–11. doi:10.1080/147342204100032331. PMID   15233578. S2CID   21026074.