Sodium tungstate

Last updated
Sodium tungstate
Wolframan sodny.JPG
Names
IUPAC name
Sodium tungstate
Identifiers
3D model (JSmol)
ECHA InfoCard 100.033.389 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
RTECS number
  • YO7875000
UNII
  • InChI=1S/2Na.4O.W/q2*+1;;;2*-1;
  • [O-][W](=O)(=O)[O-].[Na+].[Na+]
Properties
Na2WO4
Molar mass 293.82 g/mol
AppearanceWhite rhombohedral crystals
Density 4.179 g/cm3 (anhydrous)
3.25 g/cm3 (dihydrate)
Melting point 698 °C (1,288 °F; 971 K)
57.5 g/100 mL (0 °C)
74.2 g/100 mL (25 °C)
96.9 g/100 mL (100 °C)
Solubility slightly soluble in ammonia
insoluble in alcohol, acid
Structure
Rhombic (anhydrous)
orthorhombic (dihydrate)
Hazards
Safety data sheet (SDS) External MSDS
Related compounds
Other cations
Lithium tungstate
Caesium tungstate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Sodium tungstate is the inorganic compound with the formula Na2WO4. This white, water-soluble solid is the sodium salt of tungstic acid. It is useful as a source of tungsten for chemical synthesis. It is an intermediate in the conversion of tungsten ores to the metal. [1]

Contents

Preparation and structure

Sodium tungstate is obtained by digestion of tungsten ores, the economically important representatives of which are tungstates, in base. Illustrative is the extraction of sodium tungstate from wolframite: [1]

Fe/MnWO4 + 2 NaOH + 2 H2O → Na2WO4·2H2O + Fe/Mn(OH)2

Scheelite is treated similarly using sodium carbonate.

Sodium tungstate can also be produced by treating tungsten carbide with a mixture of sodium nitrate and sodium hydroxide in a fusion process which overcomes the high exothermicity of the reaction involved.

Several polymorphs of sodium tungstate are known, three at only one atmosphere pressure. They feature tetrahedral orthotungstate dianions but differ in the packing motif. The WO2−
4
anion adopts a structure like sulfate (SO2−
4
). [2]

Reactions

Treatment of sodium tungstate with hydrochloric acid gives the tungsten trioxide or its acidic hydrates:

Na2WO4 + 2 HCl → WO3 + 2 NaCl + H2O
Na2WO4 + 2 HCl → WO3·H2O + 2 NaCl

This reaction can be reversed using aqueous sodium hydroxide

Uses

The dominant use of sodium tungstate is as an intermediate in the extraction of tungsten from its ores, almost all of which are tungstates. [1] Otherwise sodium tungstate has only niche applications.

In organic chemistry, sodium tungstate is used as catalyst for epoxidation of alkenes and oxidation of alcohols into aldehydes or ketones. It exhibits anti-diabetic effects. [3]

Solutions of sodium and lithium metatungstates are used in density separation. Such solutions are less toxic than bromoform and methylene iodide, but still have densities that fall between a number of naturally coupled minerals. [4]

Sodium tungstate is a competitive inhibitor of molybdenum; because tungsten is directly below molybdenum on the periodic table, it has similar electrochemical properties. Dietary tungsten reduces the concentration of molybdenum in tissues. [5] Some bacteria use molybdenum cofactor as part of their respiratory chain; in these microbes, tungstate can replace molybdenum and inhibit the generation of energy by aerobic respiration. As such, one niche use of sodium tungstate is in experimental biology—where it has been found that adding sodium tungstate to the drinking water of mice inhibits the growth of Enterobacteriaceae (a family of endogenous opportunistic pathogens) in the gut. [6]

Related Research Articles

<span class="mw-page-title-main">Acid–base reaction</span> Chemical reaction

An acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.

<span class="mw-page-title-main">Tungsten</span> Chemical element, symbol W and atomic number 74

Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isolated as a metal in 1783. Its important ores include scheelite and wolframite, the latter lending the element its alternate name.

<span class="mw-page-title-main">Sodium hydroxide</span> Chemical compound with formula NaOH

Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations Na+ and hydroxide anions OH.

<span class="mw-page-title-main">Base (chemistry)</span> Type of chemical substance

In chemistry, there are three definitions in common use of the word base, known as Arrhenius bases, Brønsted bases, and Lewis bases. All definitions agree that bases are substances which react with acids as originally proposed by G.-F. Rouelle in the mid-18th century.

In chemistry, an amphoteric compound is a molecule or ion that can react both as an acid and as a base. What exactly this can mean depends on which definitions of acids and bases are being used.

<span class="mw-page-title-main">Sodium thiosulfate</span> Chemical compound

Sodium thiosulfate (sodium thiosulphate) is an inorganic compound with the formula Na2S2O3.xH2O. Typically it is available as the white or colorless pentahydrate, Na2S2O3·5H2O. The solid is an efflorescent (loses water readily) crystalline substance that dissolves well in water.

<span class="mw-page-title-main">Manganese(II) chloride</span> Chemical compound

Manganese(II) chloride is the dichloride salt of manganese, MnCl2. This inorganic chemical exists in the anhydrous form, as well as the dihydrate (MnCl2·2H2O) and tetrahydrate (MnCl2·4H2O), with the tetrahydrate being the most common form. Like many Mn(II) species, these salts are pink, with the paleness of the color being characteristic of transition metal complexes with high spin d5 configurations.

<span class="mw-page-title-main">Sodium chlorate</span> Chemical compound

Sodium chlorate is an inorganic compound with the chemical formula NaClO3. It is a white crystalline powder that is readily soluble in water. It is hygroscopic. It decomposes above 300 °C to release oxygen and leaves sodium chloride. Several hundred million tons are produced annually, mainly for applications in bleaching pulp to produce high brightness paper.

<span class="mw-page-title-main">Tungsten trioxide</span> Chemical compound

Tungsten(VI) oxide, also known as tungsten trioxide is a chemical compound of oxygen and the transition metal tungsten, with formula WO3. The compound is also called tungstic anhydride, reflecting its relation to tungstic acid H2WO4. It is a light yellow crystalline solid.

Molybdenum trioxide describes a family of inorganic compounds with the formula MoO3(H2O)n where n = 0, 1, 2. These compounds are produced on the largest scale of any molybdenum compound. The anhydrous oxide is a precursor to molybdenum metal, an important alloying agent. It is also an important industrial catalyst. It is a yellow solid, although impure samples can appear blue or green.

A silicide is a type of chemical compound that combines silicon and a (usually) more electropositive element.

A strong electrolyte is a solution/solute that completely, or almost completely, ionizes or dissociates in a solution. These ions are good conductors of electric current in the solution.

<span class="mw-page-title-main">Iron(III) oxide-hydroxide</span> Chemical compound

Iron(III) oxide-hydroxide or ferric oxyhydroxide is the chemical compound of iron, oxygen, and hydrogen with formula FeO(OH).

Basic oxides are oxides that show basic properties in opposition to acidic oxides and that either

<span class="mw-page-title-main">Sodium formate</span> Chemical compound

Sodium formate, HCOONa, is the sodium salt of formic acid, HCOOH. It usually appears as a white deliquescent powder.

<span class="mw-page-title-main">Ammonium paratungstate</span> Chemical compound

Ammonium paratungstate (or APT) is a white crystalline salt with the chemical formula (NH4)10(H2W12O42)·4H2O. It is described as "the most important raw material for all other tungsten products."

<span class="mw-page-title-main">Chloroauric acid</span> Chemical compound

Chloroauric acid is an inorganic compound with the chemical formula H[AuCl4]. It forms hydrates H[AuCl4nH2O. Both the trihydrate and tetrahydrate are known. Both are orange-yellow solids consisting of the planar [AuCl4] anion. Often chloroauric acid is handled as a solution, such as those obtained by dissolution of gold in aqua regia. These solutions can be converted to other gold complexes or reduced to metallic gold or gold nanoparticles.

<span class="mw-page-title-main">Sodium chromate</span> Chemical compound

Sodium chromate is the inorganic compound with the formula Na2CrO4. It exists as a yellow hygroscopic solid, which can form tetra-, hexa-, and decahydrates. It is an intermediate in the extraction of chromium from its ores.

<span class="mw-page-title-main">Sodium tungsten bronze</span> Chemical intercalation compound

Sodium tungsten bronze is a form of insertion compound with the formula NaxWO3, where x is equal to or less than 1. So named because of its metallic lustre, its electrical properties range from semiconducting to metallic depending on the concentration of sodium ions present; it can also exhibit superconductivity.

References

  1. 1 2 3 Lassner, Erik; Schubert, Wolf-Dieter; Lüderitz, Eberhard; Wolf, Hans Uwe (2005). "Tungsten, Tungsten Alloys, and Tungsten Compounds". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a27_229.
  2. Carl W. F. T. Pistorius "Phase Diagrams of Sodium Tungstate and Sodium Molybdate to 45 kbar" J. Chem. Phys. 1966, volume 44, 4532. doi : 10.1063/1.1726669
  3. The Antidiabetic Agent Sodium Tungstate Activates Glycogen Synthesis through an Insulin Receptor-independent Pathway. The Journal of Biological Chemistry, Vol. 278, No. 44, Issue of October 31, pp. 42785–42794, 2003.
  4. Improved density gradient separation techniques using Sodium Polytungstate and a comparison to the use of other heavy liquids. Report, U.S. Geological Survey, 1993.
  5. Considine, Glenn D., ed. (2005). "Molybdenum". Van Nostrand's Encyclopedia of Chemistry. New York: Wiley-Interscience. pp. 1038–1040. ISBN   978-0-471-61525-5.
  6. Zhu, W.; Winter, M. G.; Byndloss, M. X.; Spiga, L.; Duerkop, B. A.; Hughes, E. R.; Büttner, L.; De Lima Romão, E.; Behrendt, C. L.; Lopez, C. A.; Sifuentes-Dominguez, L.; Huff-Hardy, K.; Wilson, R. P.; Gillis, C. C.; Koh, A. Y.; Burstein, E.; Hooper, L. V.; Bäumler, A. J.; Winter, S. E.; Winter, Sebastian E. (2018). "Precision editing of the gut microbiota ameliorates colitis". Nature. 553 (7687): 208–211. Bibcode:2018Natur.553..208Z. doi:10.1038/nature25172. PMC   5804340 . PMID   29323293.