Bromoform

Last updated
Bromoform
Skeletal formula of bromoform Bromoform-2D-skeletal.png
Skeletal formula of bromoform
Stereo, skeletal formula of bromoform with the explicit hydrogen added Natta projection of bromoform.svg
Stereo, skeletal formula of bromoform with the explicit hydrogen added
Bromoform-3D-vdW.png
Bromoformbottle.jpg
A bottle of bromoform with some in the adjacent beaker
Names
Preferred IUPAC name
Tribromomethane [1]
Other names
Identifiers
3D model (JSmol)
Abbreviations
1731048
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.000.777 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 200-854-6
49500
KEGG
MeSH bromoform
PubChem CID
RTECS number
  • PB5600000
UNII
UN number 2515
  • InChI=1S/CHBr3/c2-1(3)4/h1H Yes check.svgY
    Key: DIKBFYAXUHHXCS-UHFFFAOYSA-N Yes check.svgY
  • BrC(Br)Br
Properties
CHBr3
Molar mass 252.731 g·mol−1
AppearanceColorless liquid
Density 2.89 g/cm3
Melting point 8.69 °C; 47.64 °F; 281.84 K
Boiling point 149.40 °C; 300.92 °F; 422.55 K
3.2 g L−1 (at 30 °C)
log P 2.435
Vapor pressure 670 Pa (at 20.0 °C)
17 μmol Pa−1 kg−1
Acidity (pKa)13.7
-82.60·10−6 cm3/mol
1.595
Thermochemistry
130.5 J K−1 mol−1
6.1–12.7 kJ mol−1
−549.1–−542.5 kJ mol−1
Hazards
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-pollu.svg
Danger
H302, H315, H319, H331, H411
P261, P273, P305+P351+P338, P311
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3
0
0
Lethal dose or concentration (LD, LC):
933.0 mg kg−1(oral, rat)
1400 mg/kg (mouse, oral)
1147 mg/kg (rat, oral) [3]
1151 ppm (mammal) [3]
4282 ppm (rat, 4 hr)
7000 ppm (dog, 1 hr) [3]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.5 ppm (5 mg/m3) [skin] [2]
REL (Recommended)
TWA 0.5 ppm (5 mg/m3) [skin] [2]
IDLH (Immediate danger)
850 ppm [2]
Related compounds
Related alkanes
Supplementary data page
Bromoform (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Bromoform is an organic compound with the chemical formula CHBr3. It is a colorless liquid at room temperature, with a high refractive index and a very high density. Its sweet odor is similar to that of chloroform. It is one of the four haloforms, the others being fluoroform, chloroform, and iodoform. It is a brominated organic solvent. Currently its main use is as a laboratory reagent. It is very slightly soluble in water (one part bromoform in 800 parts water) and is miscible with alcohol, benzene, chloroform, ether, petroleum ether, acetone and oils.

Contents

Structure

The molecule adopts tetrahedral molecular geometry with C3v symmetry.

Synthesis

Bromoform was discovered in 1832 by Löwig who distilled a mixture of bromal and potassium hydroxide, as analogous to preparation of chloroform from chloral. [4]

Bromoform can be prepared by the haloform reaction using acetone and sodium hypobromite, by the electrolysis of potassium bromide in ethanol, or by treating chloroform with aluminium bromide.

Uses

Only small quantities of bromoform are currently produced industrially in the United States. In the past, it was used as a solvent, sedative and flame retardant, but now it is mainly used as a laboratory reagent, for example as an extraction solvent.

Bromoform also has medical uses; injections of bromoform are sometimes used instead of epinephrine to treat severe asthma cases. [ citation needed ]

Bromoform's high density makes it useful for separation of minerals by density. When two samples are mixed with bromoform and then allowed to settle, the top layer will contain minerals less dense than bromoform, and the bottom layer will contain denser minerals. Slightly less dense minerals can be separated in the same way by mixing the bromoform with a small amount of a less dense and miscible solvent.

Bromoform is known as an inhibitor of methanogenesis and is a common component of seaweed. Following research by CSIRO and its spin-off FutureFeed, several companies are now growing seaweed, in particular from the genus Asparagopsis , to use as a feed additive for livestock to reduce methane emissions from ruminants. [5]

Environment and Toxicology

Natural production of bromoform by phytoplankton and seaweeds in the ocean is thought to be its predominant source in the environment. [6] However, locally significant amounts of bromoform enter the environment formed as disinfection byproducts known as trihalomethanes when chlorine is added to drinking water to kill bacteria. It is somewhat soluble in water and readily evaporates into the air. Bromoform is the main trihalomethane produced in beachfront salt water swimming pools with concentrations as high as 1.2 ppm (parts per million). Concentrations in freshwater pools are 1000 times lower. [7] Occupational skin exposure limits are set at 0.5 ppm. [8]

The substance may be hazardous to the environment, and special attention should be given to aquatic organisms. Its volatility and environmental persistence makes bromoform's release, either as liquid or vapor, strongly inadvisable.

Bromoform can be absorbed into the body by inhalation and through the skin. The substance is irritating to the respiratory tract, the eyes, and the skin, and may cause effects on the central nervous system and liver, resulting in impaired functions. Its LD50 is 7.2 mmol/kg in mice, or 1.8 g/kg. The International Agency for Research on Cancer (IARC) concluded that bromoform is not classifiable as to human carcinogenicity. The EPA classified bromoform as a probable human carcinogen. [9] [10]

Related Research Articles

Chloroform, or trichloromethane, is an organic compound with the formula CHCl3 and a common solvent. It is a very volatile, colorless, strong-smelling, dense liquid produced on a large scale as a precursor to refrigerants and PTFE. Chloroform is a trihalomethane that serves as a powerful anesthetic, euphoriant, anxiolytic, and sedative when inhaled or ingested. Chloroform was used as an anesthetic between the 19th century and the first half of the 20th century. It is miscible with many solvents but it is only very slightly soluble in water.

Bromomethane, commonly known as methyl bromide, is an organobromine compound with formula CH3Br. This colorless, odorless, nonflammable gas is produced both industrially and biologically. It has a tetrahedral shape and it is a recognized ozone-depleting chemical. It was used extensively as a pesticide until being phased out by most countries in the early 2000s.

<span class="mw-page-title-main">1,2-Dibromoethane</span> Chemical compound

1,2-Dibromoethane, also known as ethylene dibromide (EDB), is an organobromine compound with the chemical formula C
2
H
4
Br
2
. Although trace amounts occur naturally in the ocean, where it is probably formed by algae and kelp, it is mainly synthetic. It is a dense colorless liquid with a faint, sweet odor, detectable at 10 ppm, and is a widely used and sometimes-controversial fumigant. The combustion of 1,2-dibromoethane produces hydrogen bromide gas that is significantly corrosive.

<span class="mw-page-title-main">Dichloromethane</span> Chemical compound

Dichloromethane is an organochlorine compound with the formula CH2Cl2. This colorless, volatile liquid with a chloroform-like, sweet odor is widely used as a solvent. Although it is not miscible with water, it is slightly polar, and miscible with many organic solvents.

<span class="mw-page-title-main">1,1,1-Trichloroethane</span> Solvent, now banned for ozone depletion

The organic compound 1,1,1-trichloroethane, also known as methyl chloroform and chlorothene, is a chloroalkane with the chemical formula CH3CCl3. It is an isomer of 1,1,2-trichloroethane. This colorless, sweet-smelling liquid was once produced industrially in large quantities for use as a solvent. It is regulated by the Montreal Protocol as an ozone-depleting substance and its use is being rapidly phased out.

<span class="mw-page-title-main">Iodoform</span> Chemical compound

Iodoform is the organoiodine compound with the chemical formula CHI3. It is a pale yellow, crystalline, volatile substance, with a penetrating and distinctive odor and, analogous to chloroform, sweetish taste. It is occasionally used as a disinfectant.

<span class="mw-page-title-main">Allyl chloride</span> Chemical compound

Allyl chloride is the organic compound with the formula CH2=CHCH2Cl. This colorless liquid is insoluble in water but soluble in common organic solvents. It is mainly converted to epichlorohydrin, used in the production of plastics. It is a chlorinated derivative of propylene. It is an alkylating agent, which makes it both useful and hazardous to handle.

<span class="mw-page-title-main">3-Pentanone</span> Chemical compound

3-Pentanone is a simple, symmetrical dialkyl ketone. It is a colorless liquid ketone with an odor like that of acetone. It is soluble in about 25 parts water, but miscible with organic solvents.

In chemistry, trihalomethanes (THMs) are chemical compounds in which three of the four hydrogen atoms of methane are replaced by halogen atoms. Trihalomethanes with all the same halogen atoms are called haloforms. Many trihalomethanes find uses in industry as solvents or refrigerants. Some THMs are also environmental pollutants, and few are considered carcinogenic.

<span class="mw-page-title-main">Ethyl formate</span> Chemical compound

Ethyl formate is an ester formed when ethanol reacts with formic acid. Ethyl formate has the characteristic smell of rum and is partially responsible for the flavor of raspberries, occurring naturally in some plant oils, fruits, and juices. Ethyl formate does not occur naturally in the animal kingdom.

1,1-Dichloroethane is a chlorinated hydrocarbon. It is a colorless oily liquid with a chloroform-like odor. It is not easily soluble in water, but miscible with most organic solvents.

<span class="mw-page-title-main">Dimethoxymethane</span> Chemical compound

Dimethoxymethane, also called methylal, is a colorless flammable liquid with a low boiling point, low viscosity and excellent dissolving power. It has a chloroform-like odor and a pungent taste. It is the dimethyl acetal of formaldehyde. Dimethoxymethane is soluble in three parts water and miscible with most common organic solvents.

<span class="mw-page-title-main">2-Ethoxyethanol</span> Chemical compound

2-Ethoxyethanol, also known by the trademark Ethyl cellosolve, is a solvent used widely in commercial and industrial applications. It is a clear, colorless, nearly odorless liquid that is miscible with water, ethanol, diethyl ether, acetone, and ethyl acetate.

<span class="mw-page-title-main">Crotonaldehyde</span> Chemical compound

Crotonaldehyde is a chemical compound with the formula CH3CH=CHCHO. The compound is usually sold as a mixture of the E- and Z-isomers, which differ with respect to the relative position of the methyl and formyl groups. The E-isomer is more common (data given in Table is for the E-isomer). This lachrymatory liquid is moderately soluble in water and miscible in organic solvents. As an unsaturated aldehyde, crotonaldehyde is a versatile intermediate in organic synthesis. It occurs in a variety of foodstuffs, e.g. soybean oils.

<span class="mw-page-title-main">1,2-Dichlorobenzene</span> Chemical compound

1,2-Dichlorobenzene, or orthodichlorobenzene (ODCB), is an aryl chloride and isomer of dichlorobenzene with the formula C6H4Cl2. This colourless liquid is poorly soluble in water but miscible with most organic solvents. It is a derivative of benzene, consisting of two adjacent chlorine atoms.

<span class="mw-page-title-main">Glycidol</span> Chemical compound

Glycidol is an organic compound that contains both epoxide and alcohol functional groups. Being bifunctional, it has a variety of industrial uses. The compound is a slightly viscous liquid that is slightly unstable and is not often encountered in pure form.

<span class="mw-page-title-main">Haloform reaction</span> Chemical reaction involving repeated halogenation of an acetyl group (–COCH3)

In chemistry, the haloform reaction is a chemical reaction in which a haloform is produced by the exhaustive halogenation of an acetyl group, in the presence of a base. The reaction can be used to transform acetyl groups into carboxyl groups or to produce chloroform, bromoform, or iodoform. Note that fluoroform can't be prepared in this way.

<span class="mw-page-title-main">Tetrabromoethane</span> Chemical compound

1,1,2,2-Tetrabromoethane, or simply tetrabromoethane (TBE), is a halogenated hydrocarbon, chemical formula C2H2Br4. Although three bromine atoms may bind to one of the carbon atoms creating 1,1,1,2-tetrabromoethane this is not thermodynamically favorable, so in practice tetrabromoethane is equal to 1,1,2,2-tetrabromoethane, where each carbon atom binds two bromine atoms.

Isopropyl alcohol is a colorless, flammable organic compound with a pungent alcoholic odor.

<span class="mw-page-title-main">4-Methyl-2-pentanol</span> Chemical compound

4-Methyl-2-pentanol or methyl isobutyl carbinol (MIBC) is an organic chemical compound used primarily as a frother in mineral flotation and in the production of lubricant oil additives such as Zinc dithiophosphate. It is also used as a solvent, in organic synthesis, and in the manufacture of brake fluid and as a precursor to some plasticizers. It is an acetone derivative in liquid state, with limited solubility in water but generally miscible with most organic solvents.

References

  1. 1 2 Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 661. doi:10.1039/9781849733069-FP001. ISBN   978-0-85404-182-4. The retained names 'bromoform' for HCBr3, 'chloroform' for HCCl3, and 'iodoform' for HCI3 are acceptable in general nomenclature. Preferred IUPAC names are substitutive names.
  2. 1 2 3 4 NIOSH Pocket Guide to Chemical Hazards. "#0066". National Institute for Occupational Safety and Health (NIOSH).
  3. 1 2 3 "Bromoform". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. George M. Beringer, BROMOFORM (1891) in American Journal of Pharmacy vol 63 p. 82
  5. "Is seaweed the solution to agriculture's methane problem?". Phyconomy. Retrieved 2020-11-13.
  6. Palmer C J and Reason C J (2009), Relationships of surface bromoform concentrations with mixed layer depth and salinity in the tropical oceans (2009), Global Biogeochemical Cycles, 23, GB2014.
  7. Beech AJ et al (1980) Nitrates, Chlorates and Trihalomethanes in Swimming Pool Water. Am J Public Health, 70(1), 79-82
  8. CDC - NIOSH Pocket Guide to Chemical Hazards
  9. IARC - https://monographs.iarc.fr/wp-content/uploads/2018/06/mono52-10.pdf
  10. ATSDR - https://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=712&tid=128