Names | |
---|---|
IUPAC name 1,1-dichloro-1,2,2,2-tetrafluoroethane | |
Other names R114a; CFC-114a | |
Identifiers | |
3D model (JSmol) | |
ChemSpider | |
ECHA InfoCard | 100.006.159 |
EC Number |
|
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C2Cl2F4 | |
Molar mass | 170.92 g·mol−1 |
Density | 1.455 g/cu cm (as a liquid under pressure) |
Melting point | −56.6 °C (−69.9 °F; 216.6 K) |
Boiling point | 3.4 °C (38.1 °F; 276.5 K) |
137 mg/L | |
Solubility | benzene, diethyl ether, ethanol |
log P | 2.78 |
Vapor pressure | 1640 mm Hg |
Refractive index (nD) | 1.3092 at 0 °C |
Hazards | |
GHS labelling: [1] | |
Danger | |
H335, H336, H370, H420 | |
P260, P261, P264, P270, P271, P304+P340, P308+P316, P319, P321, P403+P233, P405, P501, P502 | |
Related compounds | |
Related compounds | CFC-114 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
1,1-Dichlorotetrafluoroethane is a chlorofluorocarbon also known as CFC-114a or R114a by American Society of Heating, Refrigerating, and Air Conditioning Engineers. [2] It has two chlorine atoms on one carbon atom and none on the other. It is one of two isomers of dichlorotetrafluoroethane, the other being 1,2-dichlorotetrafluoroethane, also known as CFC-114.
1,1-Dichlorotetrafluoroethane can be made free from other isomers by reacting trichlorotrifluoroethane (CFC-113 or CFC-113a) with antimony pentachloride. [3] Trichlorotrifluoroethane can also be reacted with sulfur tetrafluoride or dichlorodifluoromethane with aluminium fluoride catalyst to yield 1,1-dichlorotetrafluoroethane. The use of aluminium in the catalyst favours the asymmetric molecules. [4]
It can also be made in a reaction of tetrachloroethylene with hydrogen fluoride and chlorine, but this results in a mixture. [3]
Fluorinating 1,2-dichlorodifluoroethylene with fluorine produces a small amount of 1,1-dichlorotetrafluoroethane, but mostly tetrachlorotetrafluorobutene and some other chloroflurocarbons, so is not a good way. [5]
1,1-Dichlorotetrafluoroethane has a close boiling point (3.6°C) to the isomer 1,2-dichlorotetrafluoroethane (3.8°C), and so is difficult to separate by distillation. [6] Also in a gas chromatograph, it is hard to distinguish from the symmetric 1,2 isomer. [6]
Critical properties include critical temperature 145.7°C, critical pressure 4.92 Mpa and critical density of 0.82 g/ml. [7]
1,1-Dichlorotetrafluoroethane does not ignite in air. [7]
1,1-Dichlorotetrafluoroethane reacts with hydrogen when heated at 300 to 600°C with a palladium catalyst in a hydrodechlorination. The main reaction product is 1,1,1,2-tetrafluoroethane, but also 1-chloro-1,2,2,2-tetrafluoroethane (CF3CHClF) and 1,1,1-trifluoroethane are formed. [8]
1,1-Dichlorotetrafluoroethane reacts with alkali metals, alkaline earths and aluminium. [7]
When heated with hydrogen over a nickel catalyst, 1,1-dichlorotetrafluoroethane is dechlorinated with replacement by hydrogen to yield a mixture of CF3CHClF and the dimer CF3CClFCClFCF3. [9]
CFC-114a was used in aerosol propellants, blowing agents, and in polyolefin foams. There was also use in refrigerants. Production was banned in by the Montreal Protocol. [10]
CFC-114a is a possible intermediate in the production of HFC-134a [10] which can be produced by hydrogenation. [11]
The ozone depletion potential of 1,1-dichlorotetrafluoroethane is 0.72. [12] The estimated lifetime in the atmosphere is about 100 years. [12] The radiative efficiency is 0.28 Wm−2ppb−1. [12] Global warming potential in 20 years is 6750. [12] The atmospheric concentration of CFC-114a is not usually measured separately from CFC-114 due to difficulties in distinguishing them apart. [12]
In 1978 atmospheric levels of CFC-114a were 0.35 ppt. By 2020 the level was up to 1.13 ppt. [13] CFC-114a appears to be emitted into the atmosphere is South East Asia. [10]
The atmospheric natural destruction of CFC-114a is by reaction with atomic oxygen, or breakup by ultraviolet light. [10] As of 2014 about 250 tons per year of CFC-114a were being put into the atmosphere. [10]
Ozone depletion consists of two related events observed since the late 1970s: a steady lowering of about four percent in the total amount of ozone in Earth's atmosphere, and a much larger springtime decrease in stratospheric ozone around Earth's polar regions. The latter phenomenon is referred to as the ozone hole. There are also springtime polar tropospheric ozone depletion events in addition to these stratospheric events.
Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are fully or partly halogenated hydrocarbons that contain carbon (C), hydrogen (H), chlorine (Cl), and fluorine (F), produced as volatile derivatives of methane, ethane, and propane.
Freon is a registered trademark of the Chemours Company and generic descriptor for a number of halocarbon products. They are stable, nonflammable, low toxicity gases or liquids which have generally been used as refrigerants and as aerosol propellants. These include chlorofluorocarbons and hydrofluorocarbons, both of which cause ozone depletion and contribute to global warming. 'Freon' is the brand name for the refrigerants R-12, R-13B1, R-22, R-410A, R-502, and R-503 manufactured by The Chemours Company, and so is not used to label all refrigerants of this type. They emit a strong smell similar to acetone. Freon has been found to cause damage to human health when inhaled in large amounts. Studies have been conducted in the pursuit to find beneficial reuses for gases under the Freon umbrella as an alternative to disposal of the gas.
A refrigerant is a working fluid used in cooling, heating or reverse cooling and heating of air conditioning systems and heat pumps where they undergo a repeated phase transition from a liquid to a gas and back again. Refrigerants are heavily regulated because of their toxicity and flammability and the contribution of CFC and HCFC refrigerants to ozone depletion and that of HFC refrigerants to climate change.
Halocarbon compounds are chemical compounds in which one or more carbon atoms are linked by covalent bonds with one or more halogen atoms resulting in the formation of organofluorine compounds, organochlorine compounds, organobromine compounds, and organoiodine compounds. Chlorine halocarbons are the most common and are called organochlorides.
Difluoromethane, also called difluoromethylene, HFC-32Methylene Fluoride or R-32, is an organic compound of the dihalogenoalkane variety. Invented in 1964 by Hoechst AG (not Daikin) it has the formula of CH2F2. It is a colorless gas in the ambient atmosphere and is slightly soluble in water, with a high thermal stability. Due to the low melting and boiling point, (−136.0 and −51.6 °C [−212.8 and −60.9 °F; 137.2 and 221.6 K] respectively) contact with this compound may result in frostbite. In the United States, the Clean Air Act Section 111 on Volatile Organic Compounds (VOC) has listed difluoromethane as an exception (since 1997) from the definition of VOC due to its low production of tropospheric ozone. Difluoromethane is commonly used in endothermic processes such as refrigeration or air conditioning.
Dichlorodifluoromethane (R-12) is a colorless gas popularly known by the genericized brand name Freon. It is a chlorofluorocarbon halomethane (CFC) used as a refrigerant and aerosol spray propellant. In compliance with the Montreal Protocol, its manufacture was banned in developed countries in 1996, and in developing countries in 2010 out of concerns about its damaging effect on the ozone layer. Its only allowed usage is as a fire retardant in submarines and aircraft. It is soluble in many organic solvents. R-12 cylinders are colored white.
1,1,1,2-Tetrafluoroethane (also known as norflurane (INN), R-134a, Klea 134a, Freon 134a, Forane 134a, Genetron 134a, Green Gas, Florasol 134a, Suva 134a, HFA-134a, or HFC-134a) is a hydrofluorocarbon (HFC) and haloalkane refrigerant with thermodynamic properties similar to R-12 (dichlorodifluoromethane) but with insignificant ozone depletion potential and a lower 100-year global warming potential (1,430, compared to R-12's GWP of 10,900). It has the formula CF3CH2F and a boiling point of −26.3 °C (−15.34 °F) at atmospheric pressure. R-134a cylinders are colored light blue. A phaseout and transition to HFO-1234yf and other refrigerants, with GWPs similar to CO2, began in 2012 within the automotive market.
Trichlorofluoromethane, also called freon-11, CFC-11, or R-11, is a chlorofluorocarbon (CFC). It is a colorless, faintly ethereal, and sweetish-smelling liquid that boils around room temperature. CFC-11 is a Class 1 ozone-depleting substance which damages Earth's protective stratospheric ozone layer. R-11 is not flammable at ambient temperature and pressure but it can become very combustible if heated and ignited by a strong ignition source.
Tetrafluoromethane, also known as carbon tetrafluoride or R-14, is the simplest perfluorocarbon (CF4). As its IUPAC name indicates, tetrafluoromethane is the perfluorinated counterpart to the hydrocarbon methane. It can also be classified as a haloalkane or halomethane. Tetrafluoromethane is a useful refrigerant but also a potent greenhouse gas. It has a very high bond strength due to the nature of the carbon–fluorine bond.
Octafluorocyclobutane, or perfluorocyclobutane, C4F8, is an organofluorine compound which enjoys several niche applications. Octafluorocyclobutane is a colourless gas and shipped as a liquefied gas. It is the perfluorinated analogue of cyclobutane whereby all C–H bonds are replaced with C–F bonds.
1,2-Dichlorotetrafluoroethane, or R-114, also known as cryofluorane (INN), is a chlorofluorocarbon (CFC) with the molecular formula ClF2CCF2Cl. Its primary use has been as a refrigerant. It is a non-flammable gas with a sweetish, chloroform-like odor with the critical point occurring at 145.6 °C and 3.26 MPa. When pressurized or cooled, it is a colorless liquid. It is listed on the Intergovernmental Panel on Climate Change's list of ozone depleting chemicals, and is classified as a Montreal Protocol Class I, group 1 ozone depleting substance.
Chlorotrifluoromethane, R-13, CFC-13, or Freon 13, is a non-flammable, non-corrosive, nontoxic chlorofluorocarbon (CFC) and also a mixed halomethane. It is a man-made substance used primarily as a refrigerant. When released into the environment, CFC-13 has a high ozone depletion potential, and long atmospheric lifetime. Only a few other greenhouse gases surpass CFC-13 in global warming potential (GWP). The IPCC AR5 reported that CFC-13's atmospheric lifetime was 640 years.
2,2-Dichloro-1,1,1-trifluoroethane or HCFC-123 is considered as an alternative to CFC-11 in low pressure refrigeration and HVAC systems, and should not be used in foam blowing processes or solvent applications. It is also the primary component of the Halotron I fire-extinguishing mixture.
1,1,2-Trichloro-1,2,2-trifluoroethane, also called trichlorotrifluoroethane or CFC-113, is a chlorofluorocarbon. It has the formula Cl2FC−CClF2. This colorless, volatile liquid is a versatile solvent.
1,1,1-Trichloro-2,2,2-trifluoroethane, also called Asymmetrical trichlorotrifluoroethane or CFC-113a, is a chlorofluorocarbon (CFC) with the formula CCl3CF3.
1,2-Dichloro-1,1,2-trifluoroethane is a volatile liquid chlorofluoroalkane composed of carbon, hydrogen, chlorine and fluorine, and with structural formula CClF2CHClF. It is also known as a refrigerant with the designation R-123a.
Tetrachloro-1,1-difluoroethane or 1,1,1,2-tetrachloro-2,2-difluoroethane, Freon 112a, R-112a, or CFC-112a is an asymmetric chlorofluorocarbon isomer of tetrachloro-1,1-difluoroethane with formula CClF2CCl3. It contains ethane substituted by four chlorine atoms and two fluorine atoms. With a boiling point of 91.5°C it is the freon with second highest boiling point.
Tetrachloro-1,2-difluoroethane is a chlorofluorocarbon known as Freon 112, CFC-112 or R-112. It has a symmetrical structure CCl2FCCl2F and so can be called symmetrical tetrachlorodifluoroethane. "Symmetrical" may also be abbreviated to "s-" or "sym-". In contrast an asymmetrical isomer has formula CCl3CClF2.
2-Chloro-1,1-difluoroethene (also known as R 1122, u-HCFC-1122 or HCFO-1122) is a toxic unsaturated hydrochlorofluorocarbon which can be written as CF2=CHCl. The HCFO portion of the name stands for hydrochlorofluoroolefin. Another constitutional isomer of it, 1-chloro-1,2-difluoroethylene, is known as HCFO-1122a.