1,1,3,3-Tetramethylguanidine

Last updated
1,1,3,3-Tetramethylguanidine
1,1,3,3-Tetramethylguanidine.svg
Tetramethylguanidine-3D-balls.png
Tetramethylguanidine-3D-spacefill.png
Names
Preferred IUPAC name
N,N,N,N-Tetramethylguanidine
Identifiers
3D model (JSmol)
969608
ChemSpider
ECHA InfoCard 100.001.185 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 201-302-7
MeSH 1,1,3,3-tetramethylguanidine
PubChem CID
UNII
UN number 2920
  • InChI=1S/C5H13N3/c1-7(2)5(6)8(3)4/h6H,1-4H3 Yes check.svgY
    Key: KYVBNYUBXIEUFW-UHFFFAOYSA-N Yes check.svgY
  • CN(C)C(=N)N(C)C
Properties
C5H13N3
Molar mass 115.180 g·mol−1
AppearanceColourless liquid
Density 918 mg mL−1
Melting point −30 °C (−22 °F; 243 K)
Boiling point 160 to 162 °C (320 to 324 °F; 433 to 435 K)
Miscible
Vapor pressure 30 Pa (at 20 °C)
Acidity (pKa)13.0±1.0 [1] (pKa of conjugate acid in water)
1.469
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H226, H302, H314
P280, P305+P351+P338, P310
Flash point 60 °C (140 °F; 333 K)
Explosive limits 1–7.5%
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Tetramethylguanidine is an organic compound with the formula HNC(N(CH3)2)2. This colourless liquid is a strong base, as judged by the high pKa of its' conjugate acid. [2]

It was originally prepared from tetramethylthiourea via S-methylation and amination, but alternative methods start from cyanogen iodide. [3]

Uses

Tetramethylguanidine is mainly used as a strong, non-nucleophilic base for alkylations, often as a substitute for the more expensive DBU and DBN. [3] Since it is highly water-soluble, it is easily removed from mixtures in organic solvents. It is also used as a base-catalyst in the production of polyurethane. [4]

Related Research Articles

In chemistry, an acid dissociation constant is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction

<span class="mw-page-title-main">Protecting group</span> Group of atoms introduced into a compound to prevent subsequent reactions

A protecting group or protective group is introduced into a molecule by chemical modification of a functional group to obtain chemoselectivity in a subsequent chemical reaction. It plays an important role in multistep organic synthesis.

<span class="mw-page-title-main">Hydrogen bromide</span> Chemical compound

Hydrogen bromide is the inorganic compound with the formula HBr. It is a hydrogen halide consisting of hydrogen and bromine. A colorless gas, it dissolves in water, forming hydrobromic acid, which is saturated at 68.85% HBr by weight at room temperature. Aqueous solutions that are 47.6% HBr by mass form a constant-boiling azeotrope mixture that boils at 124.3 °C (255.7 °F). Boiling less concentrated solutions releases H2O until the constant-boiling mixture composition is reached.

<span class="mw-page-title-main">1,8-Bis(dimethylamino)naphthalene</span> Chemical compound

1,8-Bis(dimethylamino)naphthalene is an organic compound with the formula C10H6(NMe2)2 (Me = methyl). It is classified as a peri-naphthalene, i.e. a 1,8-disubstituted derivative of naphthalene. Owing to its unusual structure, it exhibits exceptional basicity. It is often referred by the trade name Proton Sponge, a trademark of Sigma-Aldrich.

In organic chemistry, an electrophilic aromatic halogenation is a type of electrophilic aromatic substitution. This organic reaction is typical of aromatic compounds and a very useful method for adding substituents to an aromatic system.

<span class="mw-page-title-main">1,8-Diazabicyclo(5.4.0)undec-7-ene</span> Chemical compound

1,8-Diazabicyclo[5.4.0]undec-7-ene, or more commonly DBU, is a chemical compound and belongs to the class of amidine compounds. It is used in organic synthesis as a catalyst, a complexing ligand, and a non-nucleophilic base.

<span class="mw-page-title-main">Bamford–Stevens reaction</span> Synthesis of alkenes by base-catalysed decomposition of tosylhydrazones

The Bamford–Stevens reaction is a chemical reaction whereby treatment of tosylhydrazones with strong base gives alkenes. It is named for the British chemist William Randall Bamford and the Scottish chemist Thomas Stevens Stevens (1900–2000). The usage of aprotic solvents gives predominantly Z-alkenes, while protic solvent gives a mixture of E- and Z-alkenes. As an alkene-generating transformation, the Bamford–Stevens reaction has broad utility in synthetic methodology and complex molecule synthesis.

<span class="mw-page-title-main">Hydrogen iodide</span> Chemical compound

Hydrogen iodide (HI) is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid. Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas under standard conditions, whereas the other is an aqueous solution of the gas. They are interconvertible. HI is used in organic and inorganic synthesis as one of the primary sources of iodine and as a reducing agent.

Pyrrolidine, also known as tetrahydropyrrole, is an organic compound with the molecular formula (CH2)4NH. It is a cyclic secondary amine, also classified as a saturated heterocycle. It is a colourless liquid that is miscible with water and most organic solvents. It has a characteristic odor that has been described as "ammoniacal, fishy, shellfish-like". In addition to pyrrolidine itself, many substituted pyrrolidines are known.

4-Dimethylaminopyridine (DMAP) is a derivative of pyridine with the chemical formula (CH3)2NC5H4N. This white solid is of interest because it is more basic than pyridine, owing to the resonance stabilisation from the NMe2 substituent.

A superbase is a compound that has a particularly high affinity for protons. Superbases are of theoretical interest and potentially valuable in organic synthesis. Superbases have been described and used since the 1850s.

<span class="mw-page-title-main">Triflic acid</span> Chemical compound

Triflic acid, the short name for trifluoromethanesulfonic acid, TFMS, TFSA, HOTf or TfOH, is a sulfonic acid with the chemical formula CF3SO3H. It is one of the strongest known acids. Triflic acid is mainly used in research as a catalyst for esterification. It is a hygroscopic, colorless, slightly viscous liquid and is soluble in polar solvents.

Triazabicyclodecene is an organic compound consisting of a bicyclic guanidine. For a charge-neutral compound, it is a relatively strong base that is effective for a variety of organic transformations. TBD is colorless solid that is soluble in a variety of solvents.

<i>tert</i>-Butyloxycarbonyl protecting group Protecting group used in organic synthesis

The tert-butyloxycarbonyl protecting group or tert-butoxycarbonyl protecting group is an acid-labile protecting group used in organic synthesis.

<i>p</i>-Toluenesulfonic acid Chemical compound

p-Toluenesulfonic acid (PTSA, pTSA, or pTsOH) or tosylic acid (TsOH) is an organic compound with the formula CH3C6H4SO3H. It is a white extremely hygroscopic solid that is soluble in water, alcohols, and other polar organic solvents. The CH3C6H4SO2 group is known as the tosyl group and is often abbreviated as Ts or Tos. Most often, TsOH refers to the monohydrate, TsOH.H2O.

Acid–base extraction is a subclass of liquid–liquid extractions and involves the separation of chemical species from other acidic or basic compounds. It is typically performed during the work-up step following a chemical synthesis to purify crude compounds and results in the product being largely free of acidic or basic impurities. A separatory funnel is commonly used to perform an acid-base extraction.

The proton affinity of an anion or of a neutral atom or molecule is the negative of the enthalpy change in the reaction between the chemical species concerned and a proton in the gas phase:

In chemistry, solvent effects are the influence of a solvent on chemical reactivity or molecular associations. Solvents can have an effect on solubility, stability and reaction rates and choosing the appropriate solvent allows for thermodynamic and kinetic control over a chemical reaction.

Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids.

<i>N</i>-Hydroxyphthalimide Chemical compound

N-Hydroxyphthalimide is the organic compound with the formula C6H4(CO)2NOH. A white or yellow solid, it is a derivative of phthalimide. The compound is as a catalyst in the synthesis of other organic compounds. It is soluble in water and organic solvents such as acetic acid, ethyl acetate and acetonitrile.

References

  1. Kaupmees, K.; Trummal, A.; Leito, I. (2014). "Basicities of Strong Bases in Water: A Computational Study". Croat. Chem. Acta. 87 (4): 385–395. doi: 10.5562/cca2472 .
  2. Rodima, Toomas; Leito, I. (2002). "Acid-Base Equilibria in Nonpolar Media. 2. Self-Consistent Basicity Scale in THF Solution Ranging from 2-Methoxypyridine to EtP1(pyrr) Phosphazene". J. Org. Chem. 67 (6): 1873–1881. doi:10.1021/jo016185p. PMID   11895405.
  3. 1 2 Ishikawa, T.; Kumamoto, T. (2006). "Guanidines in Organic Synthesis". Synthesis. 2006 (5): 737–752. doi:10.1055/s-2006-926325.
  4. Geoghegan, J. T.; Roth, R. W. (2003). "Catalytic Effects of 1,1,3,3-Tetramethylguanidine for Isocyanate Reactions". J. Appl. Polym. Sci. 9 (3): 1089–1093. doi:10.1002/app.1965.070090325.