1,4-Butanedithiol

Last updated
1,4-Butanedithiol
1,4-butanedithiol.svg
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.013.390 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 214-728-3
PubChem CID
UNII
  • Key: SMTOKHQOVJRXLK-UHFFFAOYSA-N
  • InChI=1S/C4H10S2/c5-3-1-2-4-6/h5-6H,1-4H2
  • C(CCS)CS
Properties
C4H10S2
Molar mass 122.24 g·mol−1
Appearancecolorless liquid
Melting point −53.9 °C (−65.0 °F; 219.2 K)
Boiling point 195.5 °C (383.9 °F; 468.6 K)
Hazards
GHS labelling: [1]
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P264, P264+P265, P271, P280, P302+P352, P304+P340, P305+P351+P338, P319, P321, P332+P317, P337+P317, P362+P364, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

1,4-Butanedithiol is an organosulfur compound with the formula HSCH2CH2CH2CH2SH. It is a malodorous, colorless liquid that is highly soluble in organic solvents. The compound has found applications in biodegradable polymers. [2]

Contents

Reactions

Alkylation with geminal dihalides gives 1,3-dithiepanes. Oxidation gives the cyclic disulfide 1,2-dithiane: [3]

HSCH2CH2CH2CH2SH + O → S2(CH2)4 + H2O

It forms self-assembled monolayers on gold. [4]

It is also used in polyadditions along with 1,4-butanediol to form sulfur-containing polyester and polyurethanes containing diisocyanate. [5] [6] [7] Several of these polymers are considered biodegradable and many of their components are sourced from non-petroleum oils. [8]

References

  1. "1,4-Butanedithiol". pubchem.ncbi.nlm.nih.gov.
  2. Türünç, Oĝuz; Meier, Michael A. R. (2011). "Thiol-ene vs. ADMET: a complementary approach to fatty acid-based biodegradable polymers". Green Chemistry. 13 (2): 314. doi:10.1039/c0gc00773k. ISSN   1463-9262.
  3. Oba, Makoto; Tanaka, Kazuhito; Nishiyama, Kozaburo; Ando, Wataru (2011). "Aerobic Oxidation of Thiols to Disulfides Catalyzed by Diaryl Tellurides under Photosensitized Conditions". The Journal of Organic Chemistry. 76 (10): 4173–4177. doi:10.1021/jo200496r. PMID   21480642.
  4. Park, Jong-Won; Shumaker-Parry, Jennifer S. (2014). "Structural Study of Citrate Layers on Gold Nanoparticles: Role of Intermolecular Interactions in Stabilizing Nanoparticles". Journal of the American Chemical Society. 136 (5): 1907–1921. Bibcode:2014JAChS.136.1907P. doi:10.1021/ja4097384. PMID   24422457.
  5. Kojio, Ken; Nozaki, Shuhei; Takahara, Atsushi; Yamasaki, Satoshi (2020). "Influence of chemical structure of hard segments on physical properties of polyurethane elastomers: a review". Journal of Polymer Research. 27 (6). doi:10.1007/s10965-020-02090-9. ISSN   1022-9760. S2CID   218528107.
  6. Sakhno, T. V.; Sakhno, Yu. E.; Kuchmiy, S. Ya. (2023). "Clusteroluminescence of Unconjugated Polymers: A Review". Theoretical and Experimental Chemistry. 59 (2): 75–106. doi:10.1007/s11237-023-09768-3. ISSN   0040-5760. S2CID   260597152.
  7. Manzano, Verónica E.; Kolender, Adriana A.; Varela, Oscar (2017), Goyanes, Silvia Nair; D’Accorso, Norma Beatriz (eds.), "Synthesis and Applications of Carbohydrate-Based Polyurethanes", Industrial Applications of Renewable Biomass Products, Cham: Springer International Publishing, pp. 1–43, doi:10.1007/978-3-319-61288-1_1, ISBN   978-3-319-61287-4 , retrieved 2023-12-05
  8. Kreye, Oliver; Tóth, Tommy; Meier, Michael A. R. (2011-09-01). "Copolymers derived from rapeseed derivatives via ADMET and thiol-ene addition". European Polymer Journal. 47 (9): 1804–1816. Bibcode:2011EurPJ..47.1804K. doi:10.1016/j.eurpolymj.2011.06.012. ISSN   0014-3057.