1-Aminopropan-2-ol

Last updated
1-Aminopropan-2-ol
Isopropanolamine.svg
Names
Preferred IUPAC name
1-Aminopropan-2-ol
Other names
1-Amino-2-propanol
Isopropanolamine
MIPA; Threamine
Identifiers
  • Compounds
  • (+/−)-1-Aminopropan-2-ol
  • (R): (−)-1-Aminopropan-2-ol
  • (S): (+)-1-Aminopropan-2-ol
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.001.057 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 201-162-7
  • (R):220-532-9
  • (S):220-533-4
KEGG
PubChem CID
UNII
  • InChI=1S/C3H9NO/c1-3(5)2-4/h3,5H,2,4H2,1H3 Yes check.svgY
    Key: HXKKHQJGJAFBHI-UHFFFAOYSA-N Yes check.svgY
  • (R):InChI=1S/C3H9NO/c1-3(5)2-4/h3,5H,2,4H2,1H3/t3-/m1/s1
    Key: HXKKHQJGJAFBHI-GSVOUGTGSA-N
  • (S):InChI=1S/C3H9NO/c1-3(5)2-4/h3,5H,2,4H2,1H3/t3-/m0/s1
    Key: HXKKHQJGJAFBHI-VKHMYHEASA-N
  • OC(C)CN
  • (R):O[C@H](C)CN
  • (S):O[C@@H](C)CN
Properties
C3H9NO
Molar mass 75.111 g·mol−1
Appearanceliquid
Odor ammonia-like
Density 0.973 g/mL (18 °C) [1]
Melting point 1.74 °C (35.13 °F; 274.89 K)
Boiling point 159.46 °C (319.03 °F; 432.61 K)
soluble
Solubility soluble in alcohol, ether, acetone, benzene, CCl4
1.4479
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
2
0
Flash point 77 °C (171 °F; 350 K)
374 °C (705 °F; 647 K)
Lethal dose or concentration (LD, LC):
4.26 g/kg (rat, oral)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

1-Aminopropan-2-ol is the organic compound with the formula CH3CH(OH)CH2NH2. It is an amino alcohol. The term isopropanolamine may also refer more generally to the additional homologs diisopropanolamine (DIPA) and triisopropanolamine (TIPA).

Contents

1-Aminopropan-2-ol is chiral. It can be prepared by the addition of aqueous ammonia to propylene oxide. [2]

Biosynthesis

(R)-1-Aminopropan-2-ol is one of the components incorporated in the biosynthesis of cobalamin. The O-phosphate ester is produced from threonine by the enzyme Threonine-phosphate decarboxylase. [3] [4]

Applications

The isopropanolamines are used as buffers. They are good solubilizers of oil and fat, so they are used to neutralize fatty acids and sulfonic acid-based surfactants. Racemic 1-aminopropan-2-ol is typically used in metalworking fluid, waterborne coatings, personal care products, and in the production of titanium dioxide and polyurethanes. [5] It is an intermediate in the synthesis of a variety of pharmaceutical drugs.[ citation needed ]

(R)-1-aminopropan-2-ol is metabolised to aminoacetone by the enzyme (R)-aminopropanol dehydrogenase. [6]

Synthesis of Hexylcaine is one application.

Related Research Articles

<span class="mw-page-title-main">Methionine</span> Sulfur-containing amino acid

Methionine is an essential amino acid in humans.

<span class="mw-page-title-main">Lysine</span> Amino acid

Lysine is an α-amino acid that is a precursor to many proteins. It contains an α-amino group, an α-carboxylic acid group, and a side chain lysyl, classifying it as a basic, charged, aliphatic amino acid. It is encoded by the codons AAA and AAG. Like almost all other amino acids, the α-carbon is chiral and lysine may refer to either enantiomer or a racemic mixture of both. For the purpose of this article, lysine will refer to the biologically active enantiomer L-lysine, where the α-carbon is in the S configuration.

<span class="mw-page-title-main">Threonine</span> Amino acid

Threonine is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group, a carboxyl group, and a side chain containing a hydroxyl group, making it a polar, uncharged amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Threonine is synthesized from aspartate in bacteria such as E. coli. It is encoded by all the codons starting AC.

Aromatic <small>L</small>-amino acid decarboxylase Class of enzymes

Aromatic L-amino acid decarboxylase, also known as DOPA decarboxylase (DDC), tryptophan decarboxylase, and 5-hydroxytryptophan decarboxylase, is a lyase enzyme, located in region 7p12.2-p12.1.

<span class="mw-page-title-main">Pyridoxal phosphate</span> Active form of vitamin B6

Pyridoxal phosphate (PLP, pyridoxal 5'-phosphate, P5P), the active form of vitamin B6, is a coenzyme in a variety of enzymatic reactions. The International Union of Biochemistry and Molecular Biology has catalogued more than 140 PLP-dependent activities, corresponding to ~4% of all classified activities. The versatility of PLP arises from its ability to covalently bind the substrate, and then to act as an electrophilic catalyst, thereby stabilizing different types of carbanionic reaction intermediates.

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

<span class="mw-page-title-main">Homoserine</span> Chemical compound

Homoserine (also called isothreonine) is an α-amino acid with the chemical formula HO2CCH(NH2)CH2CH2OH. L-Homoserine is not one of the common amino acids encoded by DNA. It differs from the proteinogenic amino acid serine by insertion of an additional -CH2- unit into the backbone. Homoserine, or its lactone form, is the product of a cyanogen bromide cleavage of a peptide by degradation of methionine.

<span class="mw-page-title-main">Amino acid synthesis</span> The set of biochemical processes by which amino acids are produced

Amino acid synthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids. These 11 are called the non-essential amino acids).

In enzymology, a 4-hydroxythreonine-4-phosphate dehydrogenase (EC 1.1.1.262) is an enzyme that catalyzes the chemical reaction

In enzymology, a (R)-aminopropanol dehydrogenase (EC 1.1.1.75) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Aspartate-semialdehyde dehydrogenase</span> Amino-acid-synthesizing enzyme in fungi, plants and prokaryota

In enzymology, an aspartate-semialdehyde dehydrogenase is an enzyme that is very important in the biosynthesis of amino acids in prokaryotes, fungi, and some higher plants. It forms an early branch point in the metabolic pathway forming lysine, methionine, leucine and isoleucine from aspartate. This pathway also produces diaminopimelate which plays an essential role in bacterial cell wall formation. There is particular interest in ASADH as disabling this enzyme proves fatal to the organism giving rise to the possibility of a new class of antibiotics, fungicides, and herbicides aimed at inhibiting it.

<span class="mw-page-title-main">Threonine ammonia-lyase</span>

Threonine ammonia-lyase (EC 4.3.1.19, systematic name L-threonine ammonia-lyase (2-oxobutanoate-forming), also commonly referred to as threonine deaminase or threonine dehydratase, is an enzyme responsible for catalyzing the conversion of L-threonine into α-ketobutyrate and ammonia:

<span class="mw-page-title-main">Diphosphomevalonate decarboxylase</span> InterPro Family

Diphosphomevalonate decarboxylase (EC 4.1.1.33), most commonly referred to in scientific literature as mevalonate diphosphate decarboxylase, is an enzyme that catalyzes the chemical reaction

The enzyme threonine-phosphate decarboxylase (EC 4.1.1.81) catalyzes the chemical reaction

<span class="mw-page-title-main">Nicotinate-nucleotide—dimethylbenzimidazole phosphoribosyltransferase</span> Class of enzymes

In enzymology, a nicotinate-nucleotide-dimethylbenzimidazole phosphoribosyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cobalamin biosynthesis</span>

Cobalamin biosynthesis is the process by which bacteria and archea make cobalamin, vitamin B12. Many steps are involved in converting aminolevulinic acid via uroporphyrinogen III and adenosylcobyric acid to the final forms in which it is used by enzymes in both the producing organisms and other species, including humans who acquire it through their diet.

UDP-glucuronic acid dehydrogenase (UDP-4-keto-hexauronic acid decarboxylating) (EC 1.1.1.305, UDP-GlcUA decarboxylase, ArnADH) is an enzyme with systematic name UDP-glucuronate:NAD+ oxidoreductase (decarboxylating). This enzyme catalyses the following chemical reaction

Adenosylcobinamide-GDP ribazoletransferase is an enzyme with systematic name adenosylcobinamide-GDP:alpha-ribazole ribazoletransferase. This enzyme catalyses the following chemical reaction

Adenosylcobinamide-phosphate synthase is an enzyme with systematic name adenosylcobyric acid:(R)-1-aminopropan-2-yl phosphate ligase (ADP-forming). This enzyme catalyses the following chemical reaction

<small>L</small>-Aspartic-4-semialdehyde Chemical compound

L-Aspartic-4-semialdehyde is an α-amino acid derivative of aspartate. It is an important intermediate in the aspartate pathway, which is a metabolic pathway present in bacteria and plants. The aspartate pathway leads to the biosynthesis of a variety of amino acids from aspartate, including lysine, methionine, and threonine.

References

  1. Amino-2-propanol at Sigma-Aldrich
  2. Smith, Michael B. (19 February 2020). March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. John Wiley & Sons. ISBN   9781119371809.
  3. Cheong, Cheom-Gil; Bauer, Cary B.; Brushaber, Kevin R.; Escalante-Semerena, Jorge C.; Rayment, Ivan (2002). "Three-Dimensional Structure of the L-Threonine-O-3-phosphate Decarboxylase (CobD) Enzyme from Salmonella enterica". Biochemistry. 41 (15): 4798–4808. doi:10.1021/bi012111w. PMID   11939774.
  4. Warren, Martin J.; Raux, Evelyne; Schubert, Heidi L.; Escalante-Semerena, Jorge C. (2002). "The biosynthesis of adenosylcobalamin (Vitamin B12)". Natural Product Reports. 19 (4): 390–412. doi:10.1039/b108967f. PMID   12195810.
  5. "Monoisopropanolamine". Nanjing HBL International. Retrieved 2020-04-28.
  6. Turner, JM (1967). "Microbial metabolism of amino ketones. L-1-aminopropan-2-ol dehydrogenase and L-threonine dehydrogenase in Escherichia coli". Biochemical Journal. 104 (1): 112–121. doi:10.1042/bj1040112. PMC   1270551 . PMID   5340733.