16:9 aspect ratio

Last updated
A 16:9 rectangle in which rectangles visualize the ratio. The groupings are not square. 16x9 by Pengo.svg
A 16:9 rectangle in which rectangles visualize the ratio. The groupings are not square.
A television set with the 16:9 image ratio Samsung LE26R41BD and Yamada DVD player 20030624.jpg
A television set with the 16:9 image ratio

16:9 is a widescreen aspect ratio with a width of 16 units and height of 9 units.

Contents

Once seen as an "exotic" aspect ratio, [1] since 2009, it has become the most common aspect ratio for televisions and computer monitors, and is also the universal standard image format for the universal 1080p, 2160p and 4320p formats.

16:9 or "sixteen-nine" is the universal widescreen standard format [2] and Wide-aspect Clear-vision. [3] Japan's Hi-Vision originally started with a 15:9 ratio but converted when the international standards group introduced the wider ratio 16:9. Many digital video cameras have the capability to record in 16:9, and this is the only widescreen aspect ratio natively supported by Blu-ray Disc. It is also the native aspect ratio of the Blu-ray Disc, but Blu-ray Disc producers can also choose to show even a wider ratio such as 2.40:1 within the 16:9 frame adding Letterbox black bars within the image itself.[ citation needed ]

History

Derivation of the 16:9 aspect ratio
The main figure shows 4:3 and 2.40:1 rectangles with the same area A, and 16:9 rectangles that covers (black) or is common to (grey) them. The calculation considers the extreme rectangles, where m and n are multipliers to maintain their respective aspect ratios and areas. HDTV aspect ratio derivation.svg
Derivation of the 16:9 aspect ratio
The main figure shows 4:3 and 2.40:1 rectangles with the same area A, and 16:9 rectangles that covers (black) or is common to (grey) them. The calculation considers the extreme rectangles, where m and n are multipliers to maintain their respective aspect ratios and areas.

Kerns H. Powers, a member of the SMPTE Working Group on High-Definition Electronic Production, first proposed the 16:9 (1.77:1) aspect ratio in 1984. [4] The popular choices in 1980 were 4:3 (based on TV standard's ratio at the time), 15:9 (5:3) (the European "flat" 1.66:1 ratio), 1.85:1 (the American "flat" ratio) and 2.35:1 (the CinemaScope/Panavision) ratio for anamorphic widescreen.

Powers cut out rectangles with equal areas, shaped to match each of the popular aspect ratios. When overlapped with their center points aligned, he found that all of those aspect ratio rectangles fit within an outer rectangle with an aspect ratio of 1.77:1 and all of them also covered a smaller common inner rectangle with the same aspect ratio 1.78:1. [5] The value found by Powers is exactly the geometric mean of the extreme aspect ratios, 4:3 and 2.40:1,   1.77 which is coincidentally close to 16:9. Applying the same geometric mean technique to 16:9 and 4:3 yields an aspect ratio of around 1.54:1, sometimes approximated as 14:9 (1.55:1), which is likewise used as a compromise between these ratios. [6]

While 16:9 (1.77:1) was initially selected as a compromise format, the subsequent popularity of HD broadcast has solidified 16:9 as perhaps the most common video aspect ratio in use. [7] Most 4:3 (1.33:1) and 21:9 video is now recorded using a "shoot and protect" technique that keeps the main action within a 16:9 (1.77:1) inner rectangle to facilitate 16:9 conversion and viewing. [8] Conversely it is quite common to use a technique known as center-cutting, to approach the challenge of presenting material shot (typically 16:9) to both an HD and legacy 4:3 audience simultaneously without having to compromise image size for either audience. Content creators frame critical content or graphics to fit within the 1.33:1 raster space. This has similarities to a filming technique called open matte.

In 1993, the European Union instituted the 16:9 Action Plan, [9] to accelerate the development of the advanced television services in 16:9 aspect ratio, both in PALplus (compatible with regular PAL broadcasts) and also in HD-MAC (an early HD format). The Community fund for the 16:9 Action Plan amounted to €228,000,000.

Over a long period in the late 2000s and early 2010s, the computer industry switched from 4:3 to 16:10 (1.60:1) and then to 16:9 as the most common aspect ratio for monitors and laptops. A 2008 report by DisplaySearch cited a number of reasons for this shift, including the ability for PC and monitor manufacturers to expand their product ranges by offering products with wider screens and higher resolutions, helping consumers to more easily adopt such products and "stimulating the growth of the notebook PC and LCD monitor market". [10] By using the same aspect ratio for both TVs and monitors, manufacturing can be streamlined and research costs reduced by not requiring two separate sets of equipment, and since a 16:9 is narrower than a 16:10 panel of the same length, more panels can be created per sheet of glass. [11] [12] [13]

In 2011, Bennie Budler, product manager of IT products at Samsung South Africa, confirmed that monitors with a native resolution of 1920 × 1200 were not being manufactured anymore. "It is all about reducing manufacturing costs. The new 16:9 aspect ratio panels are more cost-effective to manufacture locally than the previous 16:10 panels". [14]

In March 2011, the 16:9 resolution 1920 × 1080 became the most common used resolution among Steam's users. The previous most common resolution was 1680 × 1050 (16:10). [15] By July 2022, 16:9 resolutions are preferred by 77% of users (1920 × 1080 with 67%; 2560 × 1440 with 10%). [16]

Properties

16:9 is the only widescreen aspect ratio natively supported by the DVD format. An anamorphic PAL region DVD video frame has a maximum resolution of 720 × 576p, but a video player software will stretch this to 1024 × 576p.

Producers can also choose to show even wider ratios such as 1.85:1 and 2.4:1 within the 16:9 DVD frame by hard matting or adding black bars within the image itself. Some films which were made in a 1.85:1 aspect ratio, such as the U.S.-Italian co-production Man of La Mancha and Kenneth Branagh's Much Ado About Nothing , fit quite comfortably onto a 1.77:1 HDTV screen and have been issued as an enhanced version on DVD without the black bars. Many digital video cameras also have the capability to record in 16:9.

Common resolutions

Common resolutions for the 16:9 ratio:

WidthHeightName
640360 nHD
854480 FWVGA
960540 qHD
1024576 WSVGA
1280720 HD
1366768 FWXGA
1600900 HD+
19201080 Full HD
25601440 QHD
32001800 QHD+
38402160 4K UHD
51202880 5K
76804320 8K UHD

Countries

The second iteration of ended fullscreen become a widescreen format from the second 1998–2029 iteration. From the ended fullscreen become on widescreen on 1998–2009 iteration, 2010s iteration and 2020s iteration.

Africa

Americas

Asia

  1. Channels that are squeezed/letterboxed to 4:3 on analog terrestrial transmissions nor no letterbox on widescreen-produced programs
  2. 1 2 3 4 16:9 versions available on pay-TV services only
  3. Some programs are aired in true 16:9 formatting
  4. channels that are originally broadcasting in 4:3 on analog terrestrial, but upscaled or stretched to 16:9 for digital terrestrial television, cable and satellite

Europe

Oceania

See also

Related Research Articles

<span class="mw-page-title-main">Letterboxing (filming)</span> Black bars below and above an image

Letter-boxing is the practice of transferring film shot in a widescreen aspect ratio to standard-width video formats while preserving the film's original aspect ratio. The resulting video-graphic image has mattes of empty space above and below it; these mattes are part of each frame of the video signal.

<span class="mw-page-title-main">Pan and scan</span> Method for adapting widescreen film to television

Pan and scan is a method of adjusting widescreen film images so that they can be shown in fullscreen proportions of a standard-definition 4:3 aspect ratio television screen, often cropping off the sides of the original widescreen image to focus on the composition's most important aspects.

<span class="mw-page-title-main">Widescreen</span> Aspect ratio of a displayed image

Widescreen images are displayed within a set of aspect ratios used in film, television and computer screens. In film, a widescreen film is any film image with a width-to-height aspect ratio greater than 4:3 (1.33:1).

Enhanced-definition television, or extended-definition television (EDTV) is a Consumer Electronics Association (CEA) marketing shorthand term for certain digital television (DTV) formats and devices. Specifically, this term defines an extension of the standard-definition television (SDTV) format that enables a clearer picture during high-motion scenes compared to previous iterations of SDTV, but not producing images as detailed as high-definition television (HDTV).

Anamorphic widescreen is a process by which a widescreen image is horizontally compressed to fit into a storage medium with a narrower aspect ratio, reducing the horizontal resolution of the image while keeping its full original vertical resolution. Compatible play-back equipment can then expand the horizontal dimension to show the original widescreen image. This is typically used to allow one to store widescreen images on a medium that was originally intended for a narrower ratio, while using as much of the frame – and therefore recording as much detail – as possible.

<span class="mw-page-title-main">Display resolution</span> Width and height of a display in pixels

The display resolution or display modes of a digital television, computer monitor, or other display device is the number of distinct pixels in each dimension that can be displayed. It can be an ambiguous term especially as the displayed resolution is controlled by different factors in cathode-ray tube (CRT) displays, flat-panel displays and projection displays using fixed picture-element (pixel) arrays.

PALplus is an analogue television broadcasting system aimed to improve and enhance the PAL format by allowing 16:9 aspect ratio broadcasts, while remaining compatible with existing television receivers, defined by International Telecommunication Union (ITU) recommendation BT.1197-1. Introduced in 1993, it followed experiences with the HD-MAC and D2-MAC, hybrid analogue-digital widescreen formats that were incompatible with PAL receivers. It was developed at the University of Dortmund in Germany, in cooperation with German terrestrial broadcasters and European and Japanese manufacturers. The system had some adoption across Europe during the late 1990s and helped introduce widescreen TVs in the market, but never became mainstream.

In television technology, Wide Screen Signaling (WSS) is digital metadata embedded in invisible part of the analog TV signal describing qualities of the broadcast, in particular the intended aspect ratio of the image. This allows television broadcasters to enable both 4:3 and 16:9 television sets to optimally present pictures transmitted in either format, by displaying them in full screen, letterbox, widescreen, pillar-box, zoomed letterbox, etc.

576p is the shorthand name for a video display resolution. The p stands for progressive scan, i.e. non-interlaced, the 576 for a vertical resolution of 576 pixels. Usually it corresponds to a digital video mode with a 4:3 anamorphic resolution of 720x576 and a frame rate of 25 frames per second (576p25), and thus using the same bandwidth and carrying the same amount of pixel data as 576i, but other resolutions and frame rates are possible.

<span class="mw-page-title-main">1080p</span> Video mode

1080p is a set of HDTV high-definition video modes characterized by 1,920 pixels displayed across the screen horizontally and 1,080 pixels down the screen vertically; the p stands for progressive scan, i.e. non-interlaced. The term usually assumes a widescreen aspect ratio of 16:9, implying a resolution of 2.1 megapixels. It is often marketed as Full HD or FHD, to contrast 1080p with 720p resolution screens. Although 1080p is sometimes referred to as 2K resolution, other sources differentiate between 1080p and (true) 2K resolution.

<span class="mw-page-title-main">Pillarbox</span> Black bars on the sides of an image

The pillarbox effect occurs in widescreen video displays when black bars are placed on the sides of the image. It becomes necessary when film or video that was not originally designed for widescreen is shown on a widescreen display, or a narrower widescreen image is displayed within a wider aspect ratio, such as a 16:9 image in a 2.39:1 frame. The original material is shrunk and placed in the middle of the widescreen frame.

In television technology, Active Format Description (AFD) is a standard set of codes that can be sent in the MPEG video stream or in the baseband SDI video signal that carries information about their aspect ratio and other active picture characteristics. It has been used by television broadcasters to enable both 4:3 and 16:9 television sets to optimally present pictures transmitted in either format. It has also been used by broadcasters to dynamically control how down-conversion equipment formats widescreen 16:9 pictures for 4:3 displays.

<span class="mw-page-title-main">Pixel aspect ratio</span> Proportion between the width and the height of a pixel

A Pixel aspect ratio is a mathematical ratio that describes how the width of a pixel in a digital image compared to the height of that pixel.

<span class="mw-page-title-main">16:10 aspect ratio</span> Aspect ratio for computer displays

16:10 (1.6:1) is an aspect ratio commonly used for computer displays and tablet computers. It is equal to 8/5, close to the golden ratio, which is approximately 1.618. Video editing applications are commonly designed to allow editing of 16:9 content with the editing interface occupying the lower tenth of the display, allowing editing using a single display with the video occupying the full width.

<span class="mw-page-title-main">Technology of television</span> Telecommunications, sound and video

The technology of television has evolved since its early days using a mechanical system invented by Paul Gottlieb Nipkow in 1884. Every television system works on the scanning principle first implemented in the rotating disk scanner of Nipkow. This turns a two-dimensional image into a time series of signals that represent the brightness and color of each resolvable element of the picture. By repeating a two-dimensional image quickly enough, the impression of motion can be transmitted as well. For the receiving apparatus to reconstruct the image, synchronization information is included in the signal to allow proper placement of each line within the image and to identify when a complete image has been transmitted and a new image is to follow.

<span class="mw-page-title-main">Display aspect ratio</span> Ratio between a displays width and height

The display aspect ratio (DAR) is the aspect ratio of a display device and so the proportional relationship between the physical width and the height of the display. It is expressed as two numbers separated by a colon (x:y), where x corresponds to the width and y to the height. Common aspect ratios for displays, past and present, include 5:4, 4:3, 16:10, and 16:9.

"21:9" is a consumer electronics (CE) marketing term to describe the ultrawide aspect ratio of 64:27, designed to show films recorded in CinemaScope and equivalent modern anamorphic formats. The main benefit of this screen aspect ratio is a constant display height when displaying other content with a lesser aspect ratio.

<span class="mw-page-title-main">Display resolution standards</span> Commonly used display resolutions

A display resolution standard is a commonly used width and height dimension of an electronic visual display device, measured in pixels. This information is used for electronic devices such as a computer monitor. Certain combinations of width and height are standardized and typically given a name and an initialism which is descriptive of its dimensions.

The aspect ratio of an image is the ratio of its width to its height. It is expressed as two numbers separated by a colon, width:height. Common aspect ratios are 1.85:1 and 2.40:1 in cinematography, 4:3 and 16:9 in television, and 3:2 in still photography.

Clear-Vision is a Japanese EDTV television system introduced in the 1990s, that improves audio and video quality while remaining compatible with the existing broadcast standard. Developed to improve analog NTSC, it adds features like progressive scan, ghost cancellation and widescreen image format. A similar system named PALPlus was developed in Europe with the goal of improving analog PAL broadcasts.

References

  1. Hoehler, Dieter (2008-06-03). "A Brief Review on HDTV in Europe in the early 90's". Live-Production.TV.
  2. "Recommendation ITU-R BT.1197-1 Enhanced wide-screen PAL TV transmission system (the PALplus system)" (PDF). itu.int.
  3. Recommendation ITU-R BT.1298 - Enhanced wide-screen NTSC TV transmission system (PDF). ITU. 1997.
  4. Searching for the Perfect Aspect Ratio (PDF)
  5. "Understanding Aspect Ratios" (Technical bulletin). CinemaSource. The CinemaSource Press. 2001. Retrieved 2009-10-24.
  6. EN 5956091,"Method of showing 16:9 pictures on 4:3 displays",issued 1999-09-21
  7. "Why 16:9 aspect ratio was chosen for HD?". Guruprasad's Portal. 2014-06-13. Archived from the original on 2021-11-16. Retrieved 2021-09-17.
  8. Baker, I (1999-08-25). "Safe areas for widescreen transmission" (PDF). EBU. CH: BBC. Archived from the original (PDF) on 2010-10-11. Retrieved 2009-10-27.
  9. "Television in the 16:9 screen format" (legislation summary). EU: Europa. Retrieved 2011-09-08.
  10. "Product Planners and Marketers Must Act Before 16:9 Panels Replace Mainstream 16:10 Notebook PC and Monitor LCD Panels, New DisplaySearch Topical Report Advises". DisplaySearch. 2008-07-01. Retrieved 2011-09-08.
  11. "Display Ratio Change (again)". 2009-04-14. Archived from the original on 2020-03-02. Retrieved 2020-01-22.
  12. "16:10 vs 16:9 - the monitor aspect ratio conundrum". 2012-10-22. Retrieved 2020-01-22.
  13. "Resurgence of 16:10 Aspect Ratio Laptop Computers to Occupy 2% Share of Non-Apple Market in 2020, Says TrendForce". 2019-04-11. Retrieved 2020-01-22.
  14. "Widescreen monitors: Where did 1920×1200 go? « Hardware « MyBroadband Tech and IT News". Mybroadband.co.za. 2011-01-10. Retrieved 2011-09-08.
  15. "Steam Hardware & Software Survey". Steam. Retrieved 2011-09-08.
  16. "Steam Hardware & Software Survey". store.steampowered.com.