1E 161348-5055

Last updated
1E 161348-5055
RCW103.tif
1E 161348-5055 at the centre of RCW 103
Credit: NASA/CXC/Penn State/G.Garmire et al
Observation data
Epoch J2000        Equinox J2000
Constellation Norma
Right ascension 16h 17m 36.30s [1]
Declination −51° 02 26.6 [1]
Characteristics
Spectral type Neutron star
Apparent magnitude  (H)14.666 [1]
Apparent magnitude  (K)13.755 [1]
Other designations
1E161348-5055, 2E 3623, INTREF 682, 2MASS J16173630-5102265
Database references
SIMBAD data

1E 161348-5055.1, commonly shortened to 1E 161348-5055, is a neutron star found in the centre of RCW103 supernova remnant. It is a periodic X-ray source with a period of 6.67 hours. It is approximately 2000 years old. It is 10,000 light years away in the constellation Norma. Although once considered a central compact object, the observed bursts have caused it to be reclassified as either a magnetar or possibly an x-ray binary.

The star was discovered by the Einstein Observatory.

This star is unusual because of its rotation period of 6.7 hours. Its period is too long for a star of 2000 years, which should be rotating thousands of times faster. Instead, it is behaving more like a multi-million-year-old star. Another oddity occurred between October 1999 and January 2000. The star became 50 times brighter. The flare has faded since its peak but has not returned to its pre-1999 level. Two theories have been put forward to explain these phenomena.

The first is that the star possesses a massive magnetic field. This strong field would brake against the debris disk left behind by the supernova, which has thus far been unknown to science. This theory would account for the slower than expected rotation but not for the increase in brightness.

An alternate explanation is that the star has a low-mass X-ray binary. The companion star would orbit in an elongated orbit. When the companion is close to the neutron star, it would feed mass into it, creating the increased brightness. The drag created by the companion on the neutron star's magnetic field would also slow the rotation of the neutron star. If this scenario is the case, it is the youngest such system yet observed.

Related Research Articles

<span class="mw-page-title-main">Neutron star</span> Collapsed core of a massive star

A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses (M), possibly more if the star was especially metal-rich. Except for black holes, neutron stars are the smallest and densest known class of stellar objects. Neutron stars have a radius on the order of 10 kilometers (6 mi) and a mass of about 1.4 M. They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.

<span class="mw-page-title-main">Variable star</span> Star whose brightness fluctuates, as seen from Earth

A variable star is a star whose brightness as seen from Earth changes with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either:

<span class="mw-page-title-main">Magnetar</span> Type of neutron star with a strong magnetic field

A magnetar is a type of neutron star with an extremely powerful magnetic field (~109 to 1011 T, ~1013 to 1015 G). The magnetic-field decay powers the emission of high-energy electromagnetic radiation, particularly X-rays and gamma rays.

X-ray pulsars or accretion-powered pulsars are a class of astronomical objects that are X-ray sources displaying strict periodic variations in X-ray intensity. The X-ray periods range from as little as a fraction of a second to as much as several minutes.

<span class="mw-page-title-main">Pulsar</span> Highly magnetized, rapidly rotating neutron star

A pulsar is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Earth, and is responsible for the pulsed appearance of emission. Neutron stars are very dense and have short, regular rotational periods. This produces a very precise interval between pulses that ranges from milliseconds to seconds for an individual pulsar. Pulsars are one of the candidates for the source of ultra-high-energy cosmic rays.

<span class="mw-page-title-main">PSR J0737−3039</span> Double pulsar in the constellation Puppis

PSR J0737−3039 is the first known double pulsar. It consists of two neutron stars emitting electromagnetic waves in the radio wavelength in a relativistic binary system. The two pulsars are known as PSR J0737−3039A and PSR J0737−3039B. It was discovered in 2003 at Australia's Parkes Observatory by an international team led by the Italian radio astronomer Marta Burgay during a high-latitude pulsar survey.

Neutron star spin up is the name given to the increase in rotational speed over time first noted in Cen X-3 and Her X-1 but now observed in other X-ray pulsars. In the case of Cen X-3, the pulse period is decreasing over a timescale of 3400 years.

A pulsar kick is the name of the phenomenon that often causes a neutron star to move with a different, usually substantially greater, velocity than its progenitor star. The cause of pulsar kicks is unknown, but many astrophysicists believe that it must be due to an asymmetry in the way a supernova explodes. If true, this would give information about the supernova mechanism.

<span class="mw-page-title-main">Radio-quiet neutron star</span> Neutron star that does not emit radio waves

A radio-quiet neutron star is a neutron star that does not seem to emit radio emissions, but is still visible to Earth through electromagnetic radiation at other parts of the spectrum, particularly X-rays and gamma rays.

<span class="mw-page-title-main">Stellar magnetic field</span> Magnetic field generated by the convective motion of conductive plasma inside a star

A stellar magnetic field is a magnetic field generated by the motion of conductive plasma inside a star. This motion is created through convection, which is a form of energy transport involving the physical movement of material. A localized magnetic field exerts a force on the plasma, effectively increasing the pressure without a comparable gain in density. As a result, the magnetized region rises relative to the remainder of the plasma, until it reaches the star's photosphere. This creates starspots on the surface, and the related phenomenon of coronal loops.

<span class="mw-page-title-main">Stellar rotation</span> Angular motion of a star about its axis

Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface.

<span class="mw-page-title-main">Gamma-ray burst progenitors</span> Types of celestial objects that can emit gamma-ray bursts

Gamma-ray burst progenitors are the types of celestial objects that can emit gamma-ray bursts (GRBs). GRBs show an extraordinary degree of diversity. They can last anywhere from a fraction of a second to many minutes. Bursts could have a single profile or oscillate wildly up and down in intensity, and their spectra are highly variable unlike other objects in space. The near complete lack of observational constraint led to a profusion of theories, including evaporating black holes, magnetic flares on white dwarfs, accretion of matter onto neutron stars, antimatter accretion, supernovae, hypernovae, and rapid extraction of rotational energy from supermassive black holes, among others.

<span class="mw-page-title-main">Common envelope</span>

In astronomy, a common envelope (CE) is gas that contains a binary star system. The gas does not rotate at the same rate as the embedded binary system. A system with such a configuration is said to be in a common envelope phase or undergoing common envelope evolution.

<span class="mw-page-title-main">PSR B1937+21</span> Pulsar in the constellation Vulpecula

PSR B1937+21 is a pulsar located in the constellation Vulpecula a few degrees in the sky away from the first discovered pulsar, PSR B1919+21. The name PSR B1937+21 is derived from the word "pulsar" and the declination and right ascension at which it is located, with the "B" indicating that the coordinates are for the 1950.0 epoch. PSR B1937+21 was discovered in 1982 by Don Backer, Shri Kulkarni, Carl Heiles, Michael Davis, and Miller Goss.

<span class="mw-page-title-main">Astrophysical X-ray source</span> Astronomical object emitting X-rays

Astrophysical X-ray sources are astronomical objects with physical properties which result in the emission of X-rays.

PSR J1614–2230 is a pulsar in a binary system with a white dwarf in the constellation Scorpius. It was discovered in 2006 with the Parkes telescope in a survey of unidentified gamma ray sources in the Energetic Gamma Ray Experiment Telescope catalog. PSR J1614–2230 is a millisecond pulsar, a type of neutron star, that spins on its axis roughly 317 times per second, corresponding to a period of 3.15 milliseconds. Like all pulsars, it emits radiation in a beam, similar to a lighthouse. Emission from PSR J1614–2230 is observed as pulses at the spin period of PSR J1614–2230. The pulsed nature of its emission allows for the arrival of individual pulses to be timed. By measuring the arrival time of pulses, astronomers observed the delay of pulse arrivals from PSR J1614–2230 when it was passing behind its companion from the vantage point of Earth. By measuring this delay, known as the Shapiro delay, astronomers determined the mass of PSR J1614–2230 and its companion. The team performing the observations found that the mass of PSR J1614–2230 is 1.97 ± 0.04 M. This mass made PSR J1614–2230 the most massive known neutron star at the time of discovery, and rules out many neutron star equations of state that include exotic matter such as hyperons and kaon condensates.

<span class="mw-page-title-main">PSR J0348+0432</span> Pulsar–white dwarf binary system in Taurus constellation

PSR J0348+0432 is a pulsar–white dwarf binary system in the constellation Taurus. It was discovered in 2007 with the National Radio Astronomy Observatory's Robert C. Byrd Green Bank Telescope in a drift-scan survey.

<span class="mw-page-title-main">KQ Velorum</span> Binary star system in the constellation Vela

KQ Velorum is a variable star system in the southern constellation of Vela. It has the identifier HD 94660 in the Henry Draper Catalogue; KQ Vel is the variable star designation. This appears as a sixth magnitude star with an apparent visual magnitude of 6.112, and thus is dimly visible to the naked eye under suitable viewing conditions. The system is located at a distance of approximately 373 light years from the Sun based on parallax measurements, and is drifting further away with a radial velocity of around 23 km/s.

PSR J1946+2052 is a short-period binary pulsar system located 11,000–14,000 light-years (3,500–4,200 pc) away from Earth in the constellation Vulpecula. The system consists of a pulsar and a neutron star orbiting around their common center of mass every 1.88 hours, which is the shortest orbital period among all known double neutron star systems as of 2022. The general theory of relativity predicts their orbits are gradually decaying due to emitting gravitational waves, which will eventually lead to a neutron star merger and a kilonova in 46 million years.

A central compact object (CCO) is an x-ray source found near the center of a young, nearby supernova remnant (SNR). Given the observed x-ray flux and spectra observed from these objects, the almost certain conclusion is that CCOs are the remnant neutron stars which resulted from the recent supernova. Unlike most pulsars, CCOs generally lack pulsed radio emission or variation in the observed x-rays due to such phenomena being either nonexistent or difficult to detect. The weaker magnetic fields than most other detected neutron stars means that most of the detected x-rays are due to blackbody radiation. Confirmation that the CCO is associated with the past supernova can be confirmed using the kinematics of the objects and matching them to the age and kinematics of the host SNR.

References