2,3,3-Trimethylpentane

Last updated
2,3,3-Trimethylpentane
2,3,3-Trimethylpentane.svg
Names
Preferred IUPAC name
2,3,3-Trimethylpentane [1]
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.008.371 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 209-207-2
PubChem CID
RTECS number
  • SA3321000
UNII
UN number 1262
  • InChI=1S/C8H18/c1-6-8(4,5)7(2)3/h7H,6H2,1-5H3 Yes check.svgY
    Key: OKVWYBALHQFVFP-UHFFFAOYSA-N Yes check.svgY
  • CCC(C)(C)C(C)C
Properties
C8H18
Molar mass 114.232 g·mol−1
AppearanceColourless liquid
Odor Odourless
Melting point −102 to −100 °C; −152 to −148 °F; 171 to 173 K
Boiling point 114.4 to 115.0 °C; 237.8 to 238.9 °F; 387.5 to 388.1 K
2.4 nmol Pa−1 kg−1
Thermochemistry
245.56 J K−1 mol−1
−255.1–−252.3 kJ mol−1
−5.4683–−5.4657 MJ mol−1
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H225, H304, H315, H336, H410
P210, P261, P273, P301+P310, P331
Flash point −6 °C (21 °F; 267 K)
425 °C (797 °F; 698 K)
Related compounds
Related alkanes
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

1,2,3-Trimethylpentane is a chemical compound in the family of hydrocarbons which has a formula of C8H18. It is an isomer of octane. It has a role as a human metabolite, a bacterial metabolite and a mammalian metabolite. [2] It is an alkane and a volatile organic compound.

Related Research Articles

<span class="mw-page-title-main">Alkane</span> Type of saturated hydrocarbon compound

In organic chemistry, an alkane, or paraffin, is an acyclic saturated hydrocarbon. In other words, an alkane consists of hydrogen and carbon atoms arranged in a tree structure in which all the carbon–carbon bonds are single. Alkanes have the general chemical formula CnH2n+2. The alkanes range in complexity from the simplest case of methane, where n = 1, to arbitrarily large and complex molecules, like pentacontane or 6-ethyl-2-methyl-5-(1-methylethyl) octane, an isomer of tetradecane.

<span class="mw-page-title-main">Secondary metabolite</span> Type of organic compound

Secondary metabolites, also called specialised metabolites, toxins, secondary products, or natural products, are organic compounds produced by any lifeform, e.g. bacteria, fungi, animals, or plants, which are not directly involved in the normal growth, development, or reproduction of the organism. Instead, they generally mediate ecological interactions, which may produce a selective advantage for the organism by increasing its survivability or fecundity. Specific secondary metabolites are often restricted to a narrow set of species within a phylogenetic group. Secondary metabolites often play an important role in plant defense against herbivory and other interspecies defenses. Humans use secondary metabolites as medicines, flavourings, pigments, and recreational drugs.

In biochemistry, a metabolite is an intermediate or end product of metabolism. The term is usually used for small molecules. Metabolites have various functions, including fuel, structure, signaling, stimulatory and inhibitory effects on enzymes, catalytic activity of their own, defense, and interactions with other organisms.

Drug metabolism is the metabolic breakdown of drugs by living organisms, usually through specialized enzymatic systems. More generally, xenobiotic metabolism is the set of metabolic pathways that modify the chemical structure of xenobiotics, which are compounds foreign to an organism's normal biochemistry, such as any drug or poison. These pathways are a form of biotransformation present in all major groups of organisms and are considered to be of ancient origin. These reactions often act to detoxify poisonous compounds. The study of drug metabolism is the object of pharmacokinetics. Metabolism is one of the stages of the drug's transit through the body that involves the breakdown of the drug so that it can be excreted by the body.

<span class="mw-page-title-main">Natural product</span> Chemical compound or substance produced by a living organism, found in nature

A natural product is a natural compound or substance produced by a living organism—that is, found in nature. In the broadest sense, natural products include any substance produced by life. Natural products can also be prepared by chemical synthesis and have played a central role in the development of the field of organic chemistry by providing challenging synthetic targets. The term natural product has also been extended for commercial purposes to refer to cosmetics, dietary supplements, and foods produced from natural sources without added artificial ingredients.

<span class="mw-page-title-main">Heptachlor</span> Chemical compound

Heptachlor is an organochlorine compound that was used as an insecticide. Usually sold as a white or tan powder, heptachlor is one of the cyclodiene insecticides. In 1962, Rachel Carson's Silent Spring questioned the safety of heptachlor and other chlorinated insecticides. Due to its highly stable structure, heptachlor can persist in the environment for decades. In the United States, the Environmental Protection Agency has limited the sale of heptachlor products to the specific application of fire ant control in underground transformers. The amount that can be present in different foods is regulated.

<span class="mw-page-title-main">Phosphoenolpyruvic acid</span> Chemical compound

Phosphoenolpyruvate is the carboxylic acid derived from the enol of pyruvate and phosphate. It exists as an anion. PEP is an important intermediate in biochemistry. It has the highest-energy phosphate bond found in organisms, and is involved in glycolysis and gluconeogenesis. In plants, it is also involved in the biosynthesis of various aromatic compounds, and in carbon fixation; in bacteria, it is also used as the source of energy for the phosphotransferase system.

<span class="mw-page-title-main">Iproniazid</span> Antidepressant

Iproniazid is a non-selective, irreversible monoamine oxidase inhibitor (MAOI) of the hydrazine class. It is a xenobiotic that was originally designed to treat tuberculosis, but was later most prominently used as an antidepressant drug. However, it was withdrawn from the market because of its hepatotoxicity. The medical use of iproniazid was discontinued in most of the world in the 1960s, but remained in use in France until its discontinuation in 2015.

<span class="mw-page-title-main">2-Methylheptane</span> Chemical compound

2-Methylheptane is a branched-chain alkane and an isomer of octane. It is an heptane molecule with a methyl group attached to its second atom. It is a flammable colorless liquid used as fuel.

<span class="mw-page-title-main">JWH-018</span> Chemical compound

JWH-018 (1-pentyl-3-(1-naphthoyl)indole, NA-PIMO or AM-678) is an analgesic chemical from the naphthoylindole family that acts as a full agonist at both the CB1 and CB2 cannabinoid receptors, with some selectivity for CB2. It produces effects in animals similar to those of tetrahydrocannabinol (THC), a cannabinoid naturally present in cannabis, leading to its use in synthetic cannabis products that in some countries are sold legally as "incense blends".

<span class="mw-page-title-main">24,25-Dihydroxycholecalciferol</span> Chemical compound

24,25-Dihydroxycholecalciferol, also known as 24,25-dihydroxyvitamin D3 and (24R)-hydroxycalcidiol (abbreviated as 24(R),25-(OH)2D3), is a compound which is closely related to 1,25-dihydroxyvitamin D3, the active form of vitamin D3. Like vitamin D3 itself and calcifediol (25-hydroxyvitamin D3), it is inactive as a hormone both in vitro and in vivo. It was first identified in 1972 in the laboratory of Hector DeLuca and Michael F. Holick.

<span class="mw-page-title-main">3α-Androstanediol</span> Chemical compound

3α-Androstanediol also known as 5α-androstane-3α,17β-diol and sometimes shortened in the literature to 3α-diol, is an endogenous steroid hormone and neurosteroid and a metabolite of androgens like dihydrotestosterone (DHT).

The molecular formula C8H18 (molar mass: 114.23 g/mol) may refer to:

<span class="mw-page-title-main">2,3,4-Trimethylpentane</span> Chemical compound

2,3,4-Trimethylpentane is a branched alkane. It is one of the isomers of octane.

<span class="mw-page-title-main">Triazofos</span> Chemical compound

Triazofos is a chemical compound used in acaricides, insecticides, and nematicides.

<span class="mw-page-title-main">Hydroxybupropion</span> Group of stereoisomers

Hydroxybupropion, or 6-hydroxybupropion, is the major active metabolite of the antidepressant and smoking cessation drug bupropion. It is formed from bupropion by the liver enzyme CYP2B6 during first-pass metabolism. With oral bupropion treatment, hydroxybupropion is present in plasma at area under the curve concentrations that are as many as 16 to 20 times greater than those of bupropion itself, demonstrating extensive conversion of bupropion into hydroxybupropion in humans. As such, hydroxybupropion is likely to play a very important role in the effects of oral bupropion, which could accurately be thought of as functioning largely as a prodrug to hydroxybupropion.

<span class="mw-page-title-main">20α-Dihydroprogesterone</span> Chemical compound

20α-Dihydroprogesterone (20α-DHP), also known as 20α-hydroxyprogesterone (20α-OHP), is a naturally occurring, endogenous progestogen. It is a metabolite of progesterone, formed by the 20α-hydroxysteroid dehydrogenases (20α-HSDs) AKR1C1, AKR1C2, and AKR1C3 and the 17β-hydroxysteroid dehydrogenase (17β-HSD) HSD17B1. 20α-DHP can be transformed back into progesterone by 20α-HSDs and by the 17β-HSD HSD17B2. HSD17B2 is expressed in the human endometrium and cervix among other tissues. In animal studies, 20α-DHP has been found to be selectively taken up into and retained in target tissues such as the uterus, brain, and skeletal muscle.

δ<sup>4</sup>-Tibolone Chemical compound

δ4-Tibolone, also known as 7α-methylnorethisterone or as 7α-methyl-17α-ethynyl-19-nortestosterone, is a synthetic androgen and progestin which was never marketed. The compound is a major active metabolite of tibolone, which itself is a prodrug of δ4-tibolone along with 3α-hydroxytibolone and 3β-hydroxytibolone. Tibolone and δ4-tibolone are thought to be responsible for the androgenic and progestogenic activity of tibolone, while 3α-hydroxytibolone and 3β-hydroxytibolone are thought to be responsible for its estrogenic activity.

<span class="mw-page-title-main">5α-Dihydrolevonorgestrel</span> Chemical compound

5α-Dihydrolevonorgestrel (5α-DHLNG) is an active metabolite of the progestin levonorgestrel which is formed by 5α-reductase. It has about one-third of the affinity of levonorgestrel for the progesterone receptor. In contrast to levonorgestrel, the compound has both progestogenic and antiprogestogenic activity, and hence has a selective progesterone receptor modulator-like profile of activity. This is analogous to the case of norethisterone and 5α-dihydronorethisterone. In addition to the progesterone receptor, 5α-DHLNG interacts with the androgen receptor. It has similar affinity for the androgen receptor relative to levonorgestrel, and has androgenic effects similarly to levonorgestrel and testosterone. 5α-DHLNG is further transformed into 3α,5α- and 3β,5α-THLNG, which bind weakly to the estrogen receptor and have weak estrogenic activity. These metabolites are considered to be responsible for the weak estrogenic activity of high doses of levonorgestrel.

<span class="mw-page-title-main">Threohydrobupropion</span> Type of substituted amphetamine derivative

Threohydrobupropion is a substituted amphetamine derivative—specifically a β-hydroxyamphetamine—and a major active metabolite of the antidepressant drug bupropion (Wellbutrin). Bupropion is a norepinephrine–dopamine reuptake inhibitor and nicotinic acetylcholine receptor negative allosteric modulator, with its metabolites contributing substantially to its activities. Threohydrobupropion exists as two isomers, (1R,2R)-threohydrobupropion and (1S,2S)-threohydrobupropion. Other metabolites of bupropion include hydroxybupropion and erythrohydrobupropion.

References

  1. "2,3,3-TRIMETHYLPENTANE - Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 26 March 2005. Identification and Related Records. Retrieved 11 March 2012.
  2. Bergwerf, Herman. "MolView". MolView. Retrieved 2023-11-24.