2,3-Dimercapto-1-propanesulfonic acid

Last updated
2,3-Dimercapto-1-propanesulfonic acid
2,3-Dimercapto-1-propanesulfonic acid.png
DMPS-3D-balls.png
Names
Preferred IUPAC name
2,3-Bis(sulfanyl)propane-1-sulfonic acid [1]
Other names
2,3-Dimercaptopropane-1-sulfonic acid
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
MeSH Unithiol
PubChem CID
UNII
  • InChI=1S/C3H8O3S3/c4-9(5,6)2-3(8)1-7/h3,7-8H,1-2H2,(H,4,5,6) Yes check.svgY
    Key: JLVSRWOIZZXQAD-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C3H8O3S3/c4-9(5,6)2-3(8)1-7/h3,7-8H,1-2H2,(H,4,5,6)
    Key: JLVSRWOIZZXQAD-UHFFFAOYAD
  • OS(=O)(=O)CC(S)CS
  • O=S(=O)(O)CC(S)CS
Properties
C3H8O3S3
Molar mass 188.27 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

2,3-Dimercapto-1-propanesulfonic acid (abbreviated DMPS) and its sodium salt (known as Unithiol) are chelating agents that form complexes with various heavy metals. They are related to dimercaprol, which is another chelating agent.

The synthesis of DMPS was first reported in 1956 by V. E. Petrunkin. [2] The effects of DMPS on heavy metal poisoning, including with polonium-210, were investigated in the following years. DMPS was found to have some protective effect, prolonging the survival time. [3]

A study was undertaken of DMPS use by workers involved in the production of a calomel skin bleaching lotion and in direct contact with mercurous chloride and that already showed elevated urine mercury levels. The sodium salt of DMPS was found to be effective in lowering the body burden of mercury and in decreasing the urinary mercury concentration to normal levels. [4]

DMPS administered to a mercury poisoned animal model failed to remove the mercury from tissues and reduce the inorganic mercury burden in the brain, indicating it is not a useful intra-cellular chelation agent. [5] [6]

A 2008 study reported a case of Stevens–Johnson syndrome (SJS), a potentially serious disease, in a child undergoing chelation therapy with DMPS; the SJS resolved gradually after the chelation therapy was stopped. [7]

A 2020 study found DMPS to provide some benefits taken orally in mitigating effects from hemotoxic snakebites (using venom from saw-scaled vipers Viperidae Echis) in mouse models when given soon after exposure, suggesting its potential for repurposing as a prehospital treatment. [Albulescu, L.; Hale, M.S.;Ainsworth, S.; Alsolaiss, J.; Crittenden, E.; Calvete, J.J.; Evans, C.; Wilkinson, M.C.; Harrison, R.A.; Kool, J.; Casewell, N.R. (2020). "Preclinical validation of a repurposed metal chelator as an early-intervention therapeutic for hemotoxic snakebite". Science Translational Medicine, Vol 12, Issue 542, 8314 DOI: 10.1126/scitranslmed.aay8314]

See also

Related Research Articles

Chelation is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate ligand and a single central metal atom. These ligands are called chelants, chelators, chelating agents, or sequestering agents. They are usually organic compounds, but this is not a necessity, as in the case of zinc and its use as a maintenance therapy to prevent the absorption of copper in people with Wilson's disease.

<span class="mw-page-title-main">Ethylenediaminetetraacetic acid</span> Chemical compound

Ethylenediaminetetraacetic acid (EDTA), also called edetic acid after its own abbreviation, is an aminopolycarboxylic acid with the formula [CH2N(CH2CO2H)2]2. This white, water-soluble solid is widely used to bind to iron (Fe2+/Fe3+) and calcium ions (Ca2+), forming water-soluble complexes even at neutral pH. It is thus used to dissolve Fe- and Ca-containing scale as well as to deliver iron ions under conditions where its oxides are insoluble. EDTA is available as several salts, notably disodium EDTA, sodium calcium edetate, and tetrasodium EDTA, but these all function similarly.

<span class="mw-page-title-main">Mercury poisoning</span> Poisoning caused by mercury chemicals

Mercury poisoning is a type of metal poisoning due to exposure to mercury. Symptoms depend upon the type, dose, method, and duration of exposure. They may include muscle weakness, poor coordination, numbness in the hands and feet, skin rashes, anxiety, memory problems, trouble speaking, trouble hearing, or trouble seeing. High-level exposure to methylmercury is known as Minamata disease. Methylmercury exposure in children may result in acrodynia in which the skin becomes pink and peels. Long-term complications may include kidney problems and decreased intelligence. The effects of long-term low-dose exposure to methylmercury are unclear.

<span class="mw-page-title-main">Chelation therapy</span> Medical procedure to remove heavy metals from the body

Chelation therapy is a medical procedure that involves the administration of chelating agents to remove heavy metals from the body. Chelation therapy has a long history of use in clinical toxicology and remains in use for some very specific medical treatments, although it is administered under very careful medical supervision due to various inherent risks, including the mobilization of mercury and other metals through the brain and other parts of the body by the use of weak chelating agents that unbind with metals before elimination, exacerbating existing damage. To avoid mobilization, some practitioners of chelation use strong chelators, such as selenium, taken at low doses over a long period of time.

<span class="mw-page-title-main">Dimercaprol</span> Chemical compound

Dimercaprol, also called British anti-Lewisite (BAL), is a medication used to treat acute poisoning by arsenic, mercury, gold, and lead. It may also be used for antimony, thallium, or bismuth poisoning, although the evidence for those uses is not very strong. It is given by injection into a muscle.

DMPS may be an acronym for:

<span class="mw-page-title-main">Mercury(I) chloride</span> Chemical compound

Mercury(I) chloride is the chemical compound with the formula Hg2Cl2. Also known as the mineral calomel (a rare mineral) or mercurous chloride, this dense white or yellowish-white, odorless solid is the principal example of a mercury(I) compound. It is a component of reference electrodes in electrochemistry.

<span class="mw-page-title-main">Succimer</span> Medication used to treat lead, mercury, and arsenic poisoning

Succimer, sold under the brand name Chemet among others, is a medication used to treat lead, mercury, and arsenic poisoning. When radiolabeled with technetium-99m, it is used in many types of diagnostic testing. A full course of Succimer lasts for 19 days of oral administration. A second course should be given when more than two weeks pass after the first course.

<span class="mw-page-title-main">Penicillamine</span> Chemical compound

Penicillamine, sold under the brand name of Cuprimine among others, is a medication primarily used for the treatment of Wilson's disease. It is also used for people with kidney stones who have high urine cystine levels, rheumatoid arthritis, and various heavy metal poisonings. It is taken by mouth.

<span class="mw-page-title-main">Tiabendazole</span> Chemical compound

Tiabendazole, also known as thiabendazole or TBZ and the trade names Mintezol, Tresaderm, and Arbotect, is a preservative, an antifungal agent, and an antiparasitic agent.

Acrodynia is a medical condition which occurs due to mercury poisoning. The condition of pain and dusky pink discoloration in the hands and feet is due to exposure or ingesting of mercury. It was known as Pink Disease before it was accepted that it was just mercury poisoning. The word acrodynia is derived from the Greek: ακρος, which means end or extremity, and Greek: οδυνη, which means pain. As such, it might be (erroneously) used to indicate that a patient has pain in the hands or feet. The condition is known by various other names including hydrargyria, mercurialism, erythredema, erythredema polyneuropathy, Bilderbeck's, Selter's, Swift's and Swift-Feer disease.

<span class="mw-page-title-main">Tetrasodium EDTA</span> Chemical compound

Tetrasodium EDTA is the salt resulting from the neutralization of ethylenediaminetetraacetic acid with four equivalents of sodium hydroxide (or an equivalent sodium base). It is a white solid that is highly soluble in water. Commercial samples are often hydrated, e.g. Na4EDTA.4H2O. The properties of solutions produced from the anhydrous and hydrated forms are the same, provided they are at the same pH.

Metal toxicity or metal poisoning is the toxic effect of certain metals in certain forms and doses on life. Some metals are toxic when they form poisonous soluble compounds. Certain metals have no biological role, i.e. are not essential minerals, or are toxic when in a certain form. In the case of lead, any measurable amount may have negative health effects. It is often thought that only heavy metals can be toxic, but lighter metals such as beryllium and lithium may also be in certain circumstances. Not all heavy metals are particularly toxic, and some are essential, such as iron. The definition may also include trace elements when abnormally high doses may be toxic. An option for treatment of metal poisoning may be chelation therapy, a technique involving the administration of chelation agents to remove metals from the body.

2,3-Dihydroxybenzoic acid is a natural phenol found in Phyllanthus acidus and in the aquatic fern Salvinia molesta. It is also abundant in the fruits of Flacourtia inermis. It is a dihydroxybenzoic acid, a type of organic compound.

BDTH<sub>2</sub> Chemical compound

BDTH2 (also called BDET and BDETH2; trade names B9, MetX, and OSR#1) is an organosulfur compound that is used as a chelation agent. It is a colourless solid. The molecule consists of two thiol groups and linked via a pair of amide groups.

Animal lead poisoning is a veterinary condition and pathology caused by increased levels of the heavy metal lead in animal's body.

<span class="mw-page-title-main">Dithiol</span> Organosulfur compound with two –SH groups

In organic chemistry, a dithiol is a type of organosulfur compound with two thiol functional groups. Their properties are generally similar to those of monothiols in terms of solubility, odor, and volatility. They can be classified according to the relative location of the two thiol groups on the organic backbone.

Arsenic biochemistry refers to biochemical processes that can use arsenic or its compounds, such as arsenate. Arsenic is a moderately abundant element in Earth's crust, and although many arsenic compounds are often considered highly toxic to most life, a wide variety of organoarsenic compounds are produced biologically and various organic and inorganic arsenic compounds are metabolized by numerous organisms. This pattern is general for other related elements, including selenium, which can exhibit both beneficial and deleterious effects. Arsenic biochemistry has become topical since many toxic arsenic compounds are found in some aquifers, potentially affecting many millions of people via biochemical processes.

<span class="mw-page-title-main">Jeffrey Brent</span> Medical toxicologist

Jeffrey A. Brent is a medical toxicologist who is a distinguished clinical professor of medicine and emergency medicine at the University of Colorado, School of Medicine. In addition, he is a professor at the Department of Environmental and Occupational Health at the Colorado School of Public Health. He is also the past president of the American Academy of Clinical Toxicology, was editor in chief of the journal Toxicological Reviews, and was a member of the board of directors of the American College of Medical Toxicology. Previously, most of Brent's research focused on the use of fomepizole as a treatment for both methanol and ethylene glycol poisoning, and he led a trial of this drug which resulted in the FDA approving it in December 1997. Currently, Brent serves as Director of the Toxicology Investigators Consortium, an NIH and FDA supported multi center research and surveillance group. Brent is also a senior editor of "Critical Care Toxicology: Diagnosis and Management of the Critically Poisoned Patient," originally published in 2005, and now in its second edition, which was published in 2017.

Hurair Vasken Aposhian was a Ph.D. toxicologist and an emeritus professor of molecular and cell biology at the University of Arizona, a post he held beginning in 1975. He is also a former professor of pharmacology at the medical school at said university. He received his bachelor's degree in chemistry, at Brown University, 1948. He received a master's degree and a PhD in physiological chemistry at the University of Rochester, where he published some scientific studies about the synthesis of isoalloxazine ring-containing compounds. He did a postdoctoral with Nobel Laureate Arthur Kornberg in the department of biochemistry at Stanford University School of Medicine. He has done sabbatical scholar-in-residence at MIT and at the University of California at San Diego. He is best known for his pioneering work on Succimer and Unithiol in the treatment of arsenic, mercury, lead and other heavy metals leading to FDA approval of succimer in childhood lead poisoning at levels over 40 ug/dl. Previous posts he had held include at Vanderbilt, Tufts University, and the University of Maryland. His views about mercury in vaccines and in dental amalgams go against the consensus of the medical community and are controversial.

References

  1. Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 697. doi:10.1039/9781849733069-FP001. ISBN   978-0-85404-182-4. The prefixes 'mercapto' (–SH), and 'hydroseleno' or selenyl (–SeH), etc. are no longer recommended.
  2. Petrunkin, V. E. (1956). "Synthesis and properties of dimercapto derivatives of alkylsulfonic acids". Ukrainsky Khemichisky Zhurnal. 22: 603–607.
  3. Aposhian, H.V.; Aposhian, M.M. (1990). "Meso-2,3-dimercaptosuccinic acid: Chemical, pharmacological and toxicological properties of an orally effective metal chelating agent". Annual Review of Pharmacology and Toxicology. 30 (1): 279–306. doi:10.1146/annurev.pa.30.040190.001431. PMID   2160791.
  4. D. Gonzalez-Ramirez; M. Zuniga-Charles; A. Narro-Juarez; Y. Molina-Recio; K. M. Hurlbut; R. C. Dart; H. V. Aposhian (1 October 1998). "DMPS (2,3-Dimercaptopropane-1-sulfonate, Dimaval) Decreases the Body Burden of Mercury in Humans Exposed to Mercurous Chloride" (free full text). Journal of Pharmacology and Experimental Therapeutics. 287 (1): 8–12. PMID   9765315.
  5. Rooney, James (2007). "The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury". Toxicology. 234 (3): 145–156. doi:10.1016/j.tox.2007.02.016. PMID   17408840.
  6. Guzzi, GianPaolo; Caterina A.M. La Porta (2008). "Molecular mechanisms triggered by mercury". Toxicology. 244 (1): 1–12. doi:10.1016/j.tox.2007.11.002. PMID   18077077.
  7. Van der Linde AA, Pillen S, Gerrits GP, Bouwes Bavinck JN (2008). "Stevens–Johnson syndrome in a child with chronic mercury exposure and 2,3-dimercaptopropane-1-sulfonate (DMPS) therapy". Clin Toxicol. 46 (5): 479–81. doi: 10.1080/15563650701779687 . PMID   18568806.