2,4-Dithiapentane

Last updated
2,4-Dithiapentane
2,4-dithiapentane.svg
2,4-dithiapentane-3D-balls.png
Names
Preferred IUPAC name
Bis(methylsulfanyl)methane
Other names
Bis(methylthio)methane
Bis(methylmercapto)methane
2,4-Dithiapentane
Identifiers
3D model (JSmol)
1731143
ChEBI
ChemSpider
ECHA InfoCard 100.015.071 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 216-577-9
PubChem CID
UNII
  • InChI=1S/C3H8S2/c1-4-3-5-2/h3H2,1-2H3 Yes check.svgY
    Key: LOCDPORVFVOGCR-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C3H8S2/c1-4-3-5-2/h3H2,1-2H3
    Key: LOCDPORVFVOGCR-UHFFFAOYAH
  • CSCSC
Properties
C3H8S2
Molar mass 108.22 g·mol−1
AppearanceLiquid
Density 1.059 g/cm3, liquid
Melting point −20.5 °C (−4.9 °F; 252.7 K)
Boiling point 147 °C (297 °F; 420 K)
Immiscible
1.53
Viscosity 0.00113 Pa s
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg
Warning
H226, H315, H319, H335
P210, P233, P240, P241, P242, P243, P261, P264, P271, P280, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P370+P378, P403+P233, P403+P235, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability (yellow): no hazard codeSpecial hazards (white): no code
1
2
Flash point 43.89 °C (111.00 °F; 317.04 K)
Safety data sheet (SDS) External MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

2,4-Dithiapentane is an organosulfur compound, and is the simplest alkyl dithioether. It is a colorless liquid with a strong odor, reminiscent of freshly prepared mustard in the pure form. [1]

2,4-Dithiapentane is the dimethyldithioacetal of formaldehyde. Its synthesis was first reported in 1941. [1] [2] It is industrially prepared by the acid-catalyzed condensation of methyl mercaptan , the main aromatic compound in both halitosis and foot odor and a secondary compound in flatulence, [3] with formaldehyde.

2 CH3SH + H2C=O → CH3SCH2SCH3 + H2O

2,4-Dithiapentane is found as an aromatic component in some truffle varieties. [4] [5] [6] A synthetic version is used as the primary aromatic additive in commercial "truffle" products, such as truffle oil, truffle butter, truffle salt and truffle pastes, many of which contain no truffle content at all, [7] [8] and have elevated levels of 2,4-dithiapentane compared to levels in natural truffle products. [9] It has also been found to occur naturally in rotting wood of some species in the genus Lecythis . [10]

Notes and references

  1. 1 2 "2,4-Dithiapentane". American Chemical Society. Retrieved 3 April 2024.
  2. Böhme, Horst; Marx, Robert (8 October 1941). "Zur Kenntnis der Trisulfonyl-methane". Berichte der Deutschen Chemischen Gesellschaft (A and B Series). 74 (10): 1667–1675. doi:10.1002/cber.19410741009 . Retrieved 3 April 2024.
  3. "The Chemistry of Body Odours". Compound Interest. 7 April 2014.
  4. A. Fiecchi; M. Galli Kienle; A. Scala & P. Cabella (1967). "Bis-methylthiomethane, an odorous substance from white truffle, tuber magnatum pico". Tetrahedron Lett. 18: 1681–1682. doi:10.1016/S0040-4039(00)90698-1.
  5. Franco Bellesia; Adriano Pinetti; Alberto Bianchi and Bruno Tirillini (1996). "Volatile Compounds of the White Truffle (Tuber magnatum Pico) from Middle Italy". Flavour and Fragrance Journal. 11 (4): 239–243. doi:10.1002/(SICI)1099-1026(199607)11:4<239::AID-FFJ573>3.0.CO;2-A.
  6. Richard Splivallo & Susan E. Ebeler (2015). "Sulfur volatiles of microbial origin are key contributors to human-sensed truffle aroma". Biotechnological Products and Process Engineering: Applied Microbiology and Biotechnology. 99 (6): 2583–2592. doi:10.1007/s00253-014-6360-9. PMID   25573471. S2CID   16749990.
  7. Patterson, Daniel (2007-05-16). "Hocus-Pocus, and a Beaker of Truffles". The New York Times. Retrieved 2008-02-13.
  8. Babich, Matt (July 12, 2022). "The truffle industry is a big scam. Not just truffle oil, everything". www.tasteatlas.com. Retrieved 2022-11-19.
  9. Paul Thomas; Waill Elkhateeb; Ghoson Daba (2021). "Industrial Applications of Truffles and Truffle-like Fungi". In Kandikere R. Sridhar; Sunil K. Deshmukh (eds.). Advances in Macrofungi. CRC Press. ISBN   978-1-003-09681-8 . Retrieved 3 April 2024.
  10. Amy Berkov; Barbara Meurer-Grimes; Kenneth L. Purzycki (2000). "Do Lecythidaceae Specialists (Coleoptera, Cerambycidae) Shun Fetid Tree Species?". Biotropica. 32 (3): 440–451. doi:10.1646/0006-3606(2000)032[0440:dlsccs]2.0.co;2. S2CID   198156552.

Related Research Articles

<span class="mw-page-title-main">Pyridine</span> Heterocyclic aromatic organic compound

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom (=N−). It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Pyridine is colorless, but older or impure samples can appear yellow, due to the formation of extended, unsaturated polymeric chains, which show significant electrical conductivity. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. As of 2016, it is synthesized on the scale of about 20,000 tons per year worldwide.

<span class="mw-page-title-main">Phenols</span> Chemical compounds in which hydroxyl group is attached directly to an aromatic ring

In organic chemistry, phenols, sometimes called phenolics, are a class of chemical compounds consisting of one or more hydroxyl groups bonded directly to an aromatic hydrocarbon group. The simplest is phenol, C
6
H
5
OH
. Phenolic compounds are classified as simple phenols or polyphenols based on the number of phenol units in the molecule.

<span class="mw-page-title-main">Aldehyde</span> Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology.

<span class="mw-page-title-main">Thiol</span> Any organic compound having a sulfanyl group (–SH)

In organic chemistry, a thiol, or thiol derivative, is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The −SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols, and the word is a blend of "thio-" with "alcohol".

<span class="mw-page-title-main">Naphthalene</span> Chemical compound

Naphthalene is an organic compound with formula C
10
H
8
. It is the simplest polycyclic aromatic hydrocarbon, and is a white crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08 ppm by mass. As an aromatic hydrocarbon, naphthalene's structure consists of a fused pair of benzene rings. It is the main ingredient of traditional mothballs.

<span class="mw-page-title-main">Truffle</span> Fruiting body of a subterranean ascomycete fungus

A truffle is the fruiting body of a subterranean ascomycete fungus, one of the species of the genus Tuber. More than one hundred other genera of fungi are classified as truffles including Geopora, Peziza, Choiromyces, and Leucangium. These genera belong to the class Pezizomycetes and the Pezizales order. Several truffle-like basidiomycetes are excluded from Pezizales, including Rhizopogon and Glomus. Truffles are ectomycorrhizal fungi, so they are found in close association with tree roots. Spore dispersal is accomplished through fungivores, animals that eat fungi. These fungi have ecological roles in nutrient cycling and drought tolerance.

Skatole or 3-methylindole is an organic compound belonging to the indole family. It occurs naturally in the feces of mammals and birds and is the primary contributor to fecal odor. In low concentrations, it has a flowery smell and is found in several flowers and essential oils, including those of orange blossoms, jasmine, and Ziziphus mauritiana. It has also been identified in certain cannabis varieties.

Furan is a heterocyclic organic compound, consisting of a five-membered aromatic ring with four carbon atoms and one oxygen atom. Chemical compounds containing such rings are also referred to as furans.

Volatile organic compounds (VOCs) are organic compounds that have a high vapor pressure at room temperature. High vapor pressure correlates with a low boiling point, which relates to the number of the sample's molecules in the surrounding air, a trait known as volatility.

Nutmeg oil is a volatile essential oil from nutmeg. The oil is colorless or light yellow and smells and tastes of nutmeg. It contains numerous components of interest to the oleochemical industry. The essential oil consists of approximately 90% terpene hydrocarbons. Prominent components are sabinene, α-pinene, β-pinene, and limonene. A major oxygen-containing component is terpinen-4-ol. The oil also contains small amounts of various phenolic compounds and aromatic ethers, e.g. myristicin, elemicin, safrole, and methyl eugenol. The phenolic fraction is considered main contributor to the characteristic nutmeg odor. However, in spite of the low oil content, the characteristic composition of nutmeg oil makes it a valuable product for food, cosmetic and pharmaceutical industries. Therefore, an improved process for its extraction would be of industrial interest.

<span class="mw-page-title-main">Sorbent</span> Material that absorbs or adsorbs

A sorbent is an insoluble material that either absorbs or adsorbs liquids or gases. They are frequently used to remove pollutants and in the cleanup of chemical accidents and oil spills. Besides their uses in industry, sorbents are used in commercial products such as diapers and odor absorbents, and are researched for applications in environmental air analysis, particularly in the analysis of volatile organic compounds. The name sorbent is derived from sorption, which is itself a derivation from adsorption and absorption.

<span class="mw-page-title-main">4-Hydroxybenzoic acid</span> Chemical compound

4-Hydroxybenzoic acid, also known as p-hydroxybenzoic acid (PHBA), is a monohydroxybenzoic acid, a phenolic derivative of benzoic acid. It is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. 4-Hydroxybenzoic acid is primarily known as the basis for the preparation of its esters, known as parabens, which are used as preservatives in cosmetics and some ophthalmic solutions. It is isomeric with 2-hydroxybenzoic acid, known as salicylic acid, a precursor to aspirin, and with 3-hydroxybenzoic acid.

<i>Tuber magnatum</i> Species of edible fungus

Tuber magnatum, the white truffle, is a species of truffle in the order Pezizales and family Tuberaceae. It is found in southern Europe, the Balkans and Thailand.

<span class="mw-page-title-main">2,6-Lutidine</span> Chemical compound

2,6-Lutidine is a natural heterocyclic aromatic organic compound with the formula (CH3)2C5H3N. It is one of several dimethyl-substituted derivative of pyridine, all of which are referred to as lutidines. It is a colorless liquid with mildly basic properties and a pungent, noxious odor.

<span class="mw-page-title-main">Truffle oil</span> Oil with truffles or synthetic flavouring

Truffle oil is a modern culinary ingredient used to impart the flavor and aroma of truffles to a dish. The ingredient is commonly used as a finishing oil in a variety of dishes, including truffle fries, pasta dishes, pizzas, and puréed foods such as mashed potatoes and deviled eggs. Truffle oil is available in all seasons and is significantly less expensive than fresh truffles. This has also led to a market growth in the product and an increase in the availability of truffle-flavored foods.

Alkylpyrazines are chemical compounds based on pyrazine with different substitution patterns. Some alkylpyrazines are naturally occurring highly aromatic substances which often have a very low odor threshold and contribute to the taste and aroma of various foods including cocoa, baked goods, coffee and wines. Alkylpyrazines are also formed during the cooking of some foods via Maillard reactions.

<span class="mw-page-title-main">3-Methylpyridine</span> Chemical compound

3-Methylpyridine or 3-picoline, is an organic compound with formula 3-CH3C5H4N. It is one of three positional isomers of methylpyridine, whose structures vary according to where the methyl group is attached around the pyridine ring. This colorless liquid is a precursor to pyridine derivatives that have applications in the pharmaceutical and agricultural industries. Like pyridine, 3-methylpyridine is a colorless liquid with a strong odor and is classified as a weak base.

<span class="mw-page-title-main">DMDM hydantoin</span> Chemical compound

DMDM hydantoin is an antimicrobial formaldehyde releaser preservative with the trade name Glydant. DMDM hydantoin is an organic compound belonging to a class of compounds known as hydantoins. It is used in the cosmetics industry and found in products like shampoos, hair conditioners, hair gels, and skin care products.

<i>Tuber melanosporum</i> Black truffle

Tuber melanosporum, called the black truffle,Périgord truffle or French black truffle, is a species of truffle native to Southern Europe. It is one of the most expensive edible fungi in the world. In 2013, the truffle cost between 1,000 and 2,000 euros per kilogram.

<span class="mw-page-title-main">2,2,5,5-Tetramethyltetrahydrofuran</span> Chemical compound

2,2,5,5-tetramethyltetrahydrofuran (TMTHF) or 2,2,5,5-tetramethyloxolane (TMO) is a heterocyclic compound with the formula C
8
H
16
O
, or (CH3)2(C(CH2)2OC)(CH3)2. It can be seen as derivative of tetrahydrofuran (oxolane) with four methyl groups replacing four hydrogen atoms on each of the carbon atoms in the ring that are adjacent to the oxygen. The absence of hydrogen atoms adjacent to the oxygen means that TMTHF (TMO) does not form peroxides, unlike other common ethers such as tetrahydrofuran, diethyl ether and CPME.