2-Pinanol

Last updated
2-Pinanol
2-Pinanol isomers.svg
Names
Other names
2,6,6-trimethylbicyclo[3.1.1]heptan-2-ol
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.006.789 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 207-466-6
PubChem CID
UNII
  • InChI=1S/C10H18O/c1-9(2)7-4-5-10(3,11)8(9)6-7/h7-8,11H,4-6H2,1-3H3
    Key: YYWZKGZIIKPPJZ-UHFFFAOYSA-N
  • trans:InChI=1S/C10H18O/c1-9(2)7-4-5-10(3,11)8(9)6-7/h7-8,11H,4-6H2,1-3H3/t7-,8+,10+/m0/s1
    Key: YYWZKGZIIKPPJZ-QXFUBDJGSA-N
  • cis:InChI=1S/C10H18O/c1-9(2)7-4-5-10(3,11)8(9)6-7/h7-8,11H,4-6H2,1-3H3/t7-,8+,10-/m0/s1
    Key: YYWZKGZIIKPPJZ-XKSSXDPKSA-N
  • CC1(C2CCC(C1C2)(C)O)C
  • trans:CC1(C)[C@@H]2C[C@H]1[C@](C)(O)CC2
  • cis:CC1(C)[C@@H]2C[C@H]1[C@@](C)(O)CC2
Properties
C10H18O
Molar mass 154.253 g·mol−1
Appearancecolorless solid
Melting point 78–79 °C (cis)
58–59 °C (trans
Hazards
GHS labelling: [1]
GHS-pictogram-skull.svg GHS-pictogram-exclam.svg
Danger
H302, H311, H312, H315, H319
P264, P264+P265, P270, P280, P301+P317, P302+P352, P305+P351+P338, P316, P317, P321, P330, P332+P317, P337+P317, P361+P364, P362+P364, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

2-Pinanol is a pair of isomeric organic compounds consisting of bicyclic terpenoid. They are obtained from the terpene pinene. Both cis and trans isomers exist. Both are chiral They are produced by hydrogenation of corresponding cis- and trans-2-pinane hydroperoxides, which in turn are produced by autoxidation of pinane with air. [2] Heating 2-pinanol gives linalool. [3]

Related Research Articles

<span class="mw-page-title-main">Alkene</span> Hydrocarbon compound containing one or more C=C bonds

In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or in the terminal position. Terminal alkenes are also known as α-olefins.

<span class="mw-page-title-main">Resin</span> Solid or highly viscous substance

In polymer chemistry and materials science, a resin is a solid or highly viscous substance of plant or synthetic origin that is typically convertible into polymers. Resins are usually mixtures of organic compounds. This article focuses mainly on naturally occurring resins.

<span class="mw-page-title-main">Otto Wallach</span> German chemist (1847–1931)

Otto Wallach was a German chemist and recipient of the 1910 Nobel Prize in Chemistry for his work on alicyclic compounds.

<span class="mw-page-title-main">Terpene</span> Class of oily organic compounds found in plants

Terpenes are a class of natural products consisting of compounds with the formula (C5H8)n for n ≥ 2. Terpenes are major biosynthetic building blocks. Comprising more than 30,000 compounds, these unsaturated hydrocarbons are produced predominantly by plants, particularly conifers. In plants, terpenes and terpenoids are important mediators of ecological interactions, while some insects use some terpenes as a form of defense. Other functions of terpenoids include cell growth modulation and plant elongation, light harvesting and photoprotection, and membrane permeability and fluidity control.

<span class="mw-page-title-main">Nepetalactone</span> Chemical compound

Nepetalactone is a name for multiple iridoid analog stereoisomers. Nepetalactones are produced by Nepeta cataria (catnip) and many other plants belonging to the genus Nepeta, in which they protect these plants from herbivorous insects by functioning as insect repellents. They are also produced by many aphids, in which they are sex pheromones. Nepetalactones are cat attractants, and cause the behavioral effects that catnip induces in domestic cats. However, they affect visibly only about two thirds of adult cats. They produce similar behavioral effects in many other felids, especially in lions and jaguars. In 1941, the research group of Samuel M. McElvain was the first to determine the structures of nepetalactones and several related compounds.

<span class="mw-page-title-main">Linalool</span> Chemical compound with a floral aroma

Linalool refers to two enantiomers of a naturally occurring terpene alcohol found in many flowers and spice plants. Together with geraniol, nerol, citronellol, linalool is one of the rose alcohols. Linalool has multiple commercial applications, the majority of which are based on its pleasant scent.

<span class="mw-page-title-main">Decalin</span> Chemical compound

Decalin, a bicyclic organic compound, is an industrial solvent. A colorless liquid with an aromatic odor, it is used as a solvent for many resins or fuel additives.

(<i>E</i>)-Stilbene Chemical compound

(E)-Stilbene, commonly known as trans-stilbene, is an organic compound represented by the condensed structural formula C6H5CH=CHC6H5. Classified as a diarylethene, it features a central ethylene moiety with one phenyl group substituent on each end of the carbon–carbon double bond. It has an (E) stereochemistry, meaning that the phenyl groups are located on opposite sides of the double bond, the opposite of its geometric isomer, cis-stilbene. Trans-stilbene occurs as a white crystalline solid at room temperature and is highly soluble in organic solvents. It can be converted to cis-stilbene photochemically, and further reacted to produce phenanthrene.

<span class="mw-page-title-main">Myrcene</span> Chemical compound

Myrcene, or β-myrcene, is a monoterpene. A colorless oil, it occurs widely in essential oils. It is produced mainly semi-synthetically from Myrcia, from which it gets its name. It is an intermediate in the production of several fragrances. An less-common isomeric form, having one of the three alkene units in a different position, is α-myrcene.

Camphene is a bicyclic organic compound. It is one of the most pervasive monoterpenes. As with other terpenes, it is insoluble in water, flammable, colorless, and has a pungent smell. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, valerian, and mango. It is produced industrially by isomerization of the more common alpha-pinene using a solid acid catalyst such as titanium dioxide.

<span class="mw-page-title-main">Ocimene</span> Chemical compound

Ocimenes are a group of isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. α-Ocimene and the two β-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha isomer. α-Ocimene is cis-3,7-dimethyl-1,3,7-octatriene. β-Ocimene is trans-3,7-dimethyl-1,3,6-octatriene. β-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture, as well as the pure compounds, are oils with a pleasant odor. They are used in perfumery for their sweet herbal scent, and are believed to act as plant defense and have anti-fungal properties. Like the related acyclic terpene myrcene, ocimenes are unstable in air. Like other terpenes, the ocimenes are nearly insoluble in water, but soluble in common organic solvents.

α-Pinene Chemical compound

α-Pinene is an organic compound of the terpene class. It is one of the two isomers of pinene, the other being β-pinene. An alkene, it contains a reactive four-membered ring. It is found in the oils of many species of coniferous trees, notably Pinus and Picea species. It is also found in the essential oil of rosemary and Satureja myrtifolia. Both enantiomers are known in nature; (1S,5S)- or (−)-α-pinene is more common in European pines, whereas the (1R,5R)- or (+)-α-isomer is more common in North America. The enantiomers' racemic mixture is present in some oils such as eucalyptus oil and orange peel oil.

<span class="mw-page-title-main">Cyclododecatriene</span> Chemical compound

Cyclododecatrienes are cyclic trienes with the formula C12H18. Four isomers are known for 1,5,9-cyclododecatriene. The trans,trans,cis-isomer is a precursor in the production of nylon-12.

<span class="mw-page-title-main">Sage oil</span> Steam distillation of Salvia officinalis

Sage oils are essential oils that come in several varieties:

<span class="mw-page-title-main">Cannabis flower essential oil</span> Essential oil obtained from the hemp plant

Cannabis flower essential oil, also known as hemp essential oil, is an essential oil obtained by steam distillation from the flowers, panicles, stem, and upper leaves of the hemp plant. Hemp essential oil is distinct from hemp seed oil and hash oil: the former is a vegetable oil that is cold-pressed from the seeds of low-THC varieties of hemp, the latter is a THC-rich extract of dried female hemp flowers (marijuana) or resin (hashish).

<span class="mw-page-title-main">Terpineol</span> Chemical compound

Terpineol is any of four isomeric monoterpenoids. Terpenoids are terpene that are modified by the addition of a functional group, in this case, an alcohol. Terpineols have been isolated from a variety of sources such as cardamom, cajuput oil, pine oil, and petitgrain oil. Four isomers exist: α-, β-, γ-terpineol, and terpinen-4-ol. β- and γ-terpineol differ only by the location of the double bond. Terpineol is usually a mixture of these isomers with α-terpineol as the major constituent.

Diimide, also called diazene or diimine, is a compound having the formula HN=NH. It exists as two geometric isomers, E (trans) and Z (cis). The term diazene is more common for organic derivatives of diimide. Thus, azobenzene is an example of an organic diazene.

<span class="mw-page-title-main">Sobrerol</span> Chemical compound

Sobrerol is a mucolytic.

Verbenol (2-pine-4-ol) is a group of stereoisomeric bicyclic monoterpene alcohols. These compounds have been found to be active components of insect pheromones and essential oils.

<span class="mw-page-title-main">Pinane</span> Chemical compound

Pinane describes a pair of isomeric hydrocarbons. The isomers, actually diastereomers, are both chiral. They are the cis and trans isomers arising from the hydrogenation of the terpenes pinene. Both isomers undergo reaction with air (autoxidation) to give 2-pinane hydroperoxides. Partial reduction of these isomers gives 2-pinanol.

References

  1. "2-Pinanol". pubchem.ncbi.nlm.nih.gov.
  2. Erman, Mark B.; Kane, Bernard J. (2008). "Chemistry Around Pinene and Pinane: A Facile Synthesis of Cyclobutanes and Oxatricyclo-Derivative of Pinane from cis- and trans-Pinanols". Chemistry & Biodiversity. 5 (6): 910–919. doi:10.1002/cbdv.200890104. PMID   18618388. S2CID   24782774.
  3. Eggersdorfer, Manfred (2000). "Terpenes". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a26_205. ISBN   3527306730.