|   | |
| Names | |
|---|---|
| Preferred IUPAC name 3-Benzoxepine | |
| Identifiers | |
| 3D model (JSmol) | |
| ChemSpider | |
|  PubChem CID | |
|  CompTox Dashboard (EPA) | |
| 
 | |
| 
 | |
| Properties | |
| C10H8O | |
| Molar mass | 144.173 g·mol−1 | 
| Appearance | Yellow solid [1] | 
| Melting point | 84 (83–84 °C; [2] 84 °C [1] ) | 
| Solubility | soluble in apolar solvents (diethyl ether, benzene, tetrachloromethane) [3] and alcohols (methanol) [2] | 
| Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
3-Benzoxepin is an annulated ring system with an aromatic benzene ring and a non-aromatic, unsaturated, oxygen-containing seven-membered heterocyclic oxepin. The first synthesis was described by Karl Dimroth and coworkers in 1961. [1] It is one of the three isomers of the benzoxepins.
3-Benzoxepin itself is a non-natural compound, but the bicyclic ring system is part of the naturally occurring compounds perilloxin (I) from Perilla frutescens (variant acuta), [4] tenual (II), and tenucarb (III) from Asphodeline tenuior . [5] Perilloxin inhibits the enzyme cyclooxygenase with an IC50 of 23.2 μM. [4] Non-steroidal anti-inflammatory drugs like aspirin and ibuprofen also work by inhibiting the cyclooxygenase enzyme family. [6]
 
 Unsubstituted 3-benzoxepin can be synthesized through a double Wittig reaction from o-phthalaldehyde with bis-(α,α′-triphenylphosphonium)-dimethylether-dibromide. [2] The latter compound can be synthesized from α,α′-dibromodimethyl ether (bis(bromomethyl)ether or BBME) which is accessible from hydrobromic acid, paraformaldehyde, [7] and triphenylphosphine. The reaction is performed in dry methanol with sodium methoxide, and the product is obtained in 55% yield. [1] [3]
 
 The compound can also be obtained through UV-irratiation of certain naphthalene derivatives such as 1,4-epoxy-1,4-dihydronaphthalene. [8]
 
 It can also be obtained by photooxidation of 1,4-dihydronaphthalene, followed by pyrolysis of the formed hydroperoxides. [9]
 
 The latter syntheses give 3-benzoxepins in low yields (4–6%). [8]
3-Benzoxepin is a bright yellow solid that crystallizes in platelets, with a smell similar to naphthalene. The material is soluble in apolar, organic solvents. Like naphthalene, it can be purified through sublimation. The solid is relatively acid-resistant, only under refluxing in concentrated, acidic alcohol solutions an unsaturated aldehyde is formed (likely an indene-3-aldehyde). Catalytic hydrogenation with a palladium catalyst results in 1,2,4,5-tetrahydro-3-benzoxepin.
