5-Con triangles

Last updated
The smallest 5-Con triangles with integral sides. 5-Con-triangles-8-12-18-27.svg
The smallest 5-Con triangles with integral sides.

In geometry, two triangles are said to be 5-Con or almost congruent if they are not congruent triangles but they are similar triangles and share two side lengths (of non-corresponding sides). The 5-Con triangles are important examples for understanding the solution of triangles. Indeed, knowing three angles and two sides (but not their sequence) is not enough to determine a triangle up to congruence. A triangle is said to be 5-Con capable if there is another triangle which is almost congruent to it.

Contents

The 5-Con triangles have been discussed by Pawley:, [1] and later by Jones and Peterson. [2] They are briefly mentioned by Martin Gardner in his book Mathematical Circus. Another reference is the following exercise [3]

Explain how two triangles can have five parts (sides, angles) of one triangle congruent to five parts of the other triangle, but not be congruent triangles.

A similar exercise dates back to 1955, [4] and there an earlier reference is mentioned. It is however not possible to date the first occurrence of such standard exercises about triangles.

Examples

There are infinitely many pairs of 5-Con triangles, even up to scaling.

Results

1. Consider 5-Con triangles with side lengths and where is the scaling factor, which we may suppose to be greater than . We may also suppose . Then we must have and . The two triples of side lengths are then of the form:

Conversely, for any and , such triples are the side lengths for 5-Con triangles. (Supposing without loss of generality that , the greatest number in the first triple is and we only need to ensure ; the second triple is obtained from the first by scaling with . So we have two triangles: They are clearly similar and exactly two of the three side lengths coincide.) Some references work with instead, which leads to the inequalities .

2. Any 5-Con capable triangle has different side lengths and the middle one is the geometric mean of the other two. The ratio between the largest and the middle side length is then equal to that between the middle and the smallest side length. We can use both this ratio and its inverse for scaling and obtaining an almost congruent triangle.

5-Con triangles with the same greatest side. 5-Con-triangles-fixed-greatest-side.svg
5-Con triangles with the same greatest side.

3. To study the possible shapes of 5-Con triangles, we may restrict to studying the triangles with side lengths

The greatest angle is a strictly increasing continuous function of and varies from 60° to 180° (the limit cases are excluded). The right triangle corresponds to the value . For convenience, scale the triangle to obtain , so that the largest side is fixed: The opposite vertex then moves along a curve as is varied, as shown in the figure.

4. Having two 5-Con triangles with integral sides amounts (in the above notation) to taking any rational number and then choosing in such a way that is an integer. The four involved integral side lengths do not share any common factor (the 4-tuple is then called primitive) if and only if they are of the form where are coprime positive integers.

Further remarks

Two 7-Con quadrilaterals. 7-Con-quadrilateral.svg
Two 7-Con quadrilaterals.

Defining almost congruent triangles gives a binary relation on the set of triangles. This relation is clearly not reflexive, but it is symmetric. It is not transitive: As a counterexample, consider the three triangles with side lengths (8;12;18), (12;18;27), and (18;27;40.5).

There are infinite sequences of triangles such that any two subsequent terms are 5-Con triangles. It is easy to construct such a sequence from any 5-Con capable triangle: To get an ascending (respectively, descending) sequence, keep the two greatest (respectively, smallest) side lengths and simply choose a third greater (respectively, smaller) side length to obtain a similar triangle. One may easily arrange the triangles in the sequence in a neat way, for example in a spiral. [1]

One generalization is considering 7-Con quadrilaterals, i.e. non-congruent (and not necessarily similar) quadrilaterals where four angles and three sides coincide or, more generally, (2n-1)-Con n-gons. [1]

Related Research Articles

<span class="mw-page-title-main">Area</span> Size of a two-dimensional surface

Area is the measure of a region's size on a surface. The area of a plane region or plane area refers to the area of a shape or planar lamina, while surface area refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analogue of the length of a curve or the volume of a solid . Two different regions may have the same area ; by synecdoche, "area" sometimes is used to refer to the region, as in a "polygonal area".

<span class="mw-page-title-main">Fibonacci sequence</span> Numbers obtained by adding the two previous ones

In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn. The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes from 1 and 2. Starting from 0 and 1, the sequence begins

<span class="mw-page-title-main">Pythagorean triple</span> Integer side lengths of a right triangle

A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. A triangle whose sides form a Pythagorean triple is called a Pythagorean triangle, and is necessarily a right triangle.

<span class="mw-page-title-main">Quadrilateral</span> Polygon with four sides and four corners

In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons. Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as .

<span class="mw-page-title-main">Square root</span> Number whose square is a given number

In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square is x. For example, 4 and −4 are square roots of 16 because .

<span class="mw-page-title-main">Similarity (geometry)</span> Property of objects which are scaled or mirrored versions of each other

In Euclidean geometry, two objects are similar if they have the same shape, or if one has the same shape as the mirror image of the other. More precisely, one can be obtained from the other by uniformly scaling, possibly with additional translation, rotation and reflection. This means that either object can be rescaled, repositioned, and reflected, so as to coincide precisely with the other object. If two objects are similar, each is congruent to the result of a particular uniform scaling of the other.

<span class="mw-page-title-main">Rectangle</span> Quadrilateral with four right angles

In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is occasionally used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

<span class="mw-page-title-main">Bisection</span> Division of something into two equal or congruent parts

In geometry, bisection is the division of something into two equal or congruent parts. Usually it involves a bisecting line, also called a bisector. The most often considered types of bisectors are the segment bisector, a line that passes through the midpoint of a given segment, and the angle bisector, a line that passes through the apex of an angle . In three-dimensional space, bisection is usually done by a bisecting plane, also called the bisector.

<span class="mw-page-title-main">Rhombus</span> Quadrilateral in which all sides have the same length

In plane Euclidean geometry, a rhombus is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The rhombus is often called a "diamond", after the diamonds suit in playing cards which resembles the projection of an octahedral diamond, or a lozenge, though the former sometimes refers specifically to a rhombus with a 60° angle, and the latter sometimes refers specifically to a rhombus with a 45° angle.

<span class="mw-page-title-main">Heron's formula</span> Triangle area in terms of side lengths

In geometry, Heron's formula gives the area of a triangle in terms of the three side lengths a, b, c. Letting be the semiperimeter of the triangle, the area A is

<span class="mw-page-title-main">Cyclic quadrilateral</span> Quadrilateral whose vertices can all fall on a single circle

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

<span class="mw-page-title-main">Square root of 2</span> Unique positive real number which when multiplied by itself gives 2

The square root of 2 is a positive real number that, when multiplied by itself, equals the number 2. It may be written in mathematics as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.

In geometry, a Heronian triangle is a triangle whose side lengths a, b, and c and area A are all positive integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84.

<span class="mw-page-title-main">Special right triangle</span> Right triangle with a feature making calculations on the triangle easier

A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio. Knowing the relationships of the angles or ratios of sides of these special right triangles allows one to quickly calculate various lengths in geometric problems without resorting to more advanced methods.

<span class="mw-page-title-main">Congruent number</span>

In number theory, a congruent number is a positive integer that is the area of a right triangle with three rational number sides. A more general definition includes all positive rational numbers with this property.

<span class="mw-page-title-main">Tangential quadrilateral</span> Polygon whose four sides all touch a circle

In Euclidean geometry, a tangential quadrilateral or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals, circumscribing quadrilaterals, and circumscriptible quadrilaterals. Tangential quadrilaterals are a special case of tangential polygons.

<span class="mw-page-title-main">Bicentric quadrilateral</span> Convex, 4-sided shape with an incircle and a circumcircle

In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and centers of these circles are called inradius and circumradius, and incenter and circumcenter respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a double circle quadrilateral and double scribed quadrilateral.

<span class="mw-page-title-main">Pythagorean theorem</span> Relation between sides of a right triangle

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.

<span class="mw-page-title-main">Integer triangle</span> Triangle with integer side lengths

An integer triangle or integral triangle is a triangle all of whose side lengths are integers. A rational triangle is one whose side lengths are rational numbers; any rational triangle can be rescaled by the lowest common denominator of the sides to obtain a similar integer triangle, so there is a close relationship between integer triangles and rational triangles.

<span class="mw-page-title-main">Automedian triangle</span>

In plane geometry, an automedian triangle is a triangle in which the lengths of the three medians are proportional to the lengths of the three sides, in a different order. The three medians of an automedian triangle may be translated to form the sides of a second triangle that is similar to the first one.

References

  1. 1 2 3 Pawley, Richard G. (1967). "5-Con triangles". The Mathematics Teacher. National Council of Teachers of Mathematics. 60 (5, May 1967): 438–443. doi:10.5951/MT.60.5.0438. JSTOR   27957592.
  2. Jones, Robert T.; Peterson, Bruce B. (1974). "Almost Congruent Triangles". Mathematics Magazine. Mathematical Association of America. 47 (4, Sep. 1974): 180–189. doi:10.1080/0025570X.1974.11976393. JSTOR   2689207.
  3. School Mathematics Study Group. (1960). Mathematics for high school--Geometry. Student's text. Geometry. Vol. 2. New Haven: Yale University Press. p. 382.
  4. Thebault, Victor; Pinzka, C. F. (1955). "E1162". The American Mathematical Monthly. Mathematical Association of America. 62 (10): 729–730. doi:10.1080/00029890.1955.11988730. JSTOR   2307084.
  5. Buchholz, R. H.; MacDougall, J. A. (1999). "Heron Quadrilaterals with sides in Arithmetic or Geometric progression". Bulletin of the Australian Mathematical Society. 59 (2): 263–269. doi: 10.1017/s0004972700032883 . hdl: 1959.13/803798 .