AVCOAT

Last updated
Apollo and Orion Avcoat Avcoat.jpg
Apollo and Orion Avcoat

AVCOAT 5026-39 is a NASA code for a specific ablative heat shield material created by Avco [1] [2] (acquired by Textron in 1984). [3] It is an epoxy novolac resin with special additives in a fiberglass honeycomb matrix. In fabrication, the empty honeycomb is bonded to the primary structure and the resin is gunned into each cell individually. [4]

Contents

History

AVCOAT was used for the heat shield on NASA's Apollo command module. [5] In its final form, this material was called AVCOAT 5026–39.

Although AVCOAT was not used for the Space Shuttle orbiters, NASA is using the material for its next generation Orion spacecraft. [6] The Avcoat to be used on Orion is reformulated to meet environmental legislation that has been passed since the end of Apollo. [7] [8]

Specifications

Notable AVCOAT Installations

AVCOAT for Orion Crew Module

The Orion Crew Module was first designed for the NASA's Constellation program, but later adapted the Space Launch System to replace the Space Shuttle program. This spacecraft was planned to take astronauts to the International Space Station in 2015 and to the moon in 2024.

ASRC Federal technicians inspect AVCOAT block bonding on the Artemis II heat shield on at Kennedy Space Center on July 2, 2020. ASRC AVCOAT.jpg
ASRC Federal technicians inspect AVCOAT block bonding on the Artemis II heat shield on at Kennedy Space Center on July 2, 2020.

In the past, the honeycomb paste-like fiberglass material is gunned into each cells individually. On the other hand, the Orion heat shield is bonded onto the base of the heat shield.

To protect the Crew Module during Earth re-entry, the dish shaped AVCOAT heat shield ablator system was selected. NASA announced that this module will encounter temperature as high as 5,000 degrees Fahrenheit (2760 °C). [9] Licensed by Textron, [10] AVCOAT material is produced at New Orleans's Michoud Assembly Facility by Lockheed Martin. This heat shield will be installed at the base of the crew module to provide a controlled erosion moving heat away from the crew module into the atmosphere. This process of erosion is called “ablation” - where materials are removed by vaporization or erosion by continuous contact with the supersonic velocity of gas flow and high temperature; thus the construction of honeycomb structure was made.

Testing an AVCOAT specimen in an environmental chamber at NASA Langley AVCOAT Specimen Testing.jpg
Testing an AVCOAT specimen in an environmental chamber at NASA Langley

John Kowal, Orion's thermal protections systems manager at Johnson Space Center, discussed the biggest challenge with AVCOAT has been reviving the technology for manufacturing with similar performance as demonstrated in the Apollo Missions. [11]

The EFT-1 mission performed two orbits of Earth providing the opportunity for Orion's systems to be tested. It took about four hours with the splash down in the ocean. [12]

AVCOAT for Apollo Missions

AVCOAT was first used on the parts of the Apollo spacecraft orbiter and as a unit attached to the crew module in the past. It is a honeycomb structure. NASA confirmed that this is made of silica fibers with an epoxy novolac resin filled in a fiberglass-phenolic manufactured directly onto the heat shield. [13] [14]

NASA's Apollo Flight Test Analysis, AVCOAT 5026-39/HC-G material was tested on the nose cap of a peacemaker vehicle. [15] The temperature and ablation measurements were made at four locations on the nose cap. The report noted that the wear of the shield is due to the aerodynamic shear and heating rate. The report also noted that scientists believed that the ablation was done in a controlled manner.

After the Apollo missions, the production was then put in place for the purpose of studying. Orion Chief Engineer requested the heat shield to be redesigned, [16] however the final design was not selected.

AVCOAT Heat Shield Research and Installation for Orion Crew Module

The AVCOAT material heat shield went through several rounds of testing before being chosen for the installation. During the investigation of the thermochemical response of Avcoat TPS (based on first principles for comparison with EFT-1 data), things being tested on the heat-shield included: modeling of gas transport, heat transfer, and TPS material regression. [17]

Orion's 16.5 feet AVCOAT heat shield was secured onto the Orion Crew Module using 68 bolts by Technicians at NASA's Kennedy Space Center (KSC) in Florida. This heat shield is covered in titanium truss and a composite substitute with an addition skin made of carbon fiber layers. Orion's heat-shield was designed and manufactured by Lockheed Martin. The heat shield is like pieces of a honeycomb puzzle that all must fit together perfectly and the bolt fittings must be lined up. [10]

After the heat-shield's installation, access to components of the crew module became difficult or no longer accessible.

Flight use

Uncrewed

Crewed

Related Research Articles

<span class="mw-page-title-main">Skylab</span> First space station launched and operated by NASA

Skylab was the United States' first space station, launched by NASA, occupied for about 24 weeks between May 1973 and February 1974. It was operated by three separate three-astronaut crews: Skylab 2, Skylab 3, and Skylab 4. Major operations included an orbital workshop, a solar observatory, Earth observation, and hundreds of experiments.

<span class="mw-page-title-main">Atmospheric entry</span> Passage of an object through the gases of an atmosphere from outer space

Atmospheric entry is the movement of an object from outer space into and through the gases of an atmosphere of a planet, dwarf planet, or natural satellite. There are two main types of atmospheric entry: uncontrolled entry, such as the entry of astronomical objects, space debris, or bolides; and controlled entry of a spacecraft capable of being navigated or following a predetermined course. Technologies and procedures allowing the controlled atmospheric entry, descent, and landing of spacecraft are collectively termed as EDL.

In engineering, a heat shield is a component designed to protect an object or a human operator from being burnt or overheated by dissipating, reflecting, and/or absorbing heat. The term is most often used in reference to exhaust heat management and to systems for dissipating frictional heat. Heat shields are used most commonly in automotive and aerospace.

<span class="mw-page-title-main">Phenol formaldehyde resin</span> Chemical compound

Phenol formaldehyde resins (PF) are synthetic polymers obtained by the reaction of phenol or substituted phenol with formaldehyde. Used as the basis for Bakelite, PFs were the first commercial synthetic resins (plastics). They have been widely used for the production of molded products including billiard balls, laboratory countertops, and as coatings and adhesives. They were at one time the primary material used for the production of circuit boards but have been largely replaced with epoxy resins and fiberglass cloth, as with fire-resistant FR-4 circuit board materials.

<span class="mw-page-title-main">Constellation program</span> Cancelled 2005–2010 NASA human spaceflight program

The Constellation program was a crewed spaceflight program developed by NASA, the space agency of the United States, from 2005 to 2009. The major goals of the program were "completion of the International Space Station" and a "return to the Moon no later than 2020" with a crewed flight to the planet Mars as the ultimate goal. The program's logo reflected the three stages of the program: the Earth (ISS), the Moon, and finally Mars—while the Mars goal also found expression in the name given to the program's booster rockets: Ares. The technological aims of the program included the regaining of significant astronaut experience beyond low Earth orbit and the development of technologies necessary to enable sustained human presence on other planetary bodies.

<span class="mw-page-title-main">Apollo (spacecraft)</span> Saturn V-launched payload that took men to the Moon

The Apollo spacecraft was composed of three parts designed to accomplish the American Apollo program's goal of landing astronauts on the Moon by the end of the 1960s and returning them safely to Earth. The expendable (single-use) spacecraft consisted of a combined command and service module (CSM) and an Apollo Lunar Module (LM). Two additional components complemented the spacecraft stack for space vehicle assembly: a spacecraft–LM adapter (SLA) designed to shield the LM from the aerodynamic stress of launch and to connect the CSM to the Saturn launch vehicle and a launch escape system (LES) to carry the crew in the command module safely away from the launch vehicle in the event of a launch emergency.

<span class="mw-page-title-main">Skylab 3</span> Second crewed mission to Skylab

Skylab 3 was the second crewed mission to the first American space station, Skylab. The mission began on July 28, 1973, with the launch of NASA astronauts Alan Bean, Owen Garriott, and Jack Lousma in the Apollo command and service module on the Saturn IB rocket, and lasted 59 days, 11 hours and 9 minutes. A total of 1,084.7 astronaut-utilization hours were tallied by the Skylab 3 crew performing scientific experiments in the areas of medical activities, solar observations, Earth resources, and other experiments.

<span class="mw-page-title-main">Skylab Rescue</span> Unflown spaceflight contingency plan

The Skylab Rescue Mission was an unflown rescue mission, planned as a contingency in the event of astronauts being stranded aboard the American Skylab space station. If flown, it would have used a modified Apollo Command Module that could be launched with a crew of two and return a crew of five.

<span class="mw-page-title-main">Apollo command and service module</span> Component of the Apollo spacecraft

The Apollo command and service module (CSM) was one of two principal components of the United States Apollo spacecraft, used for the Apollo program, which landed astronauts on the Moon between 1969 and 1972. The CSM functioned as a mother ship, which carried a crew of three astronauts and the second Apollo spacecraft, the Apollo Lunar Module, to lunar orbit, and brought the astronauts back to Earth. It consisted of two parts: the conical command module, a cabin that housed the crew and carried equipment needed for atmospheric reentry and splashdown; and the cylindrical service module which provided propulsion, electrical power and storage for various consumables required during a mission. An umbilical connection transferred power and consumables between the two modules. Just before reentry of the command module on the return home, the umbilical connection was severed and the service module was cast off and allowed to burn up in the atmosphere.

<span class="mw-page-title-main">Space capsule</span> Type of spacecraft

A space capsule is a spacecraft designed to transport cargo, scientific experiments, and/or astronauts to and from space. Capsules are distinguished from other spacecraft by the ability to survive reentry and return a payload to the Earth's surface from orbit, and are distinguished from other types of recoverable spacecraft by their blunt shape, not having wings and often containing little fuel other than what is necessary for a safe return. Capsule-based crewed spacecraft such as Soyuz or Orion are often supported by a service or adapter module, and sometimes augmented with an extra module for extended space operations. Capsules make up the majority of crewed spacecraft designs, although one crewed spaceplane, the Space Shuttle, has flown in orbit.

<span class="mw-page-title-main">Reentry capsule</span> Part of a space capsule

A reentry capsule is the portion of a space capsule which returns to Earth following a spaceflight. The shape is determined partly by aerodynamics; a capsule is aerodynamically stable falling blunt end first, which allows only the blunt end to require a heat shield for atmospheric entry. A crewed capsule contains the spacecraft's instrument panel, limited storage space, and seats for crew members. Because a capsule shape has little aerodynamic lift, the final descent is via parachute, either coming to rest on land, at sea, or by active capture by an aircraft. In contrast, the development of spaceplane reentry vehicles attempts to provide a more flexible reentry profile.

Micarta is a brand name for composites of linen, canvas, paper, fiberglass, carbon fiber, or other fabric in a thermosetting plastic. It was originally used in electrical and decorative applications. Micarta was developed by George Westinghouse at least as early as 1910 using phenolic resins invented by Leo Baekeland. These resins were used to impregnate paper and cotton fabric which were cured under pressure and high temperature to produce laminates. In later years this manufacturing method included the use of fiberglass fabric, and other resin types were also used. Today Micarta high-pressure industrial laminates are produced with a wide variety of resins and fibers. The term has been used generically for most resin impregnated fiber compounds. Common uses of modern high-pressure laminates include electrical insulators, printed circuit board substrates, and knife handles.

<span class="mw-page-title-main">Altair (spacecraft)</span> Planned lander spacecraft component of NASAs cancelled Project Constellation

The Altair spacecraft, previously known as the Lunar Surface Access Module or LSAM, was the planned lander spacecraft component of NASA's cancelled Constellation program. Astronauts would have used the spacecraft for landings on the Moon, which was intended to begin around 2019. The Altair spacecraft was planned to be used both for lunar sortie and lunar outpost missions. On February 1, 2010, U.S. President Barack Obama announced a proposal to cancel the Constellation program, to be replaced with a re-scoped program, effective with the U.S. 2011 fiscal year budget.

<span class="mw-page-title-main">Boilerplate (spaceflight)</span> Nonfunctional spacecraft or payload

A boilerplate spacecraft, also known as a mass simulator, is a nonfunctional craft or payload that is used to test various configurations and basic size, load, and handling characteristics of rocket launch vehicles. It is far less expensive to build multiple, full-scale, non-functional boilerplate spacecraft than it is to develop the full system. In this way, boilerplate spacecraft allow components and aspects of cutting-edge aerospace projects to be tested while detailed contracts for the final project are being negotiated. These tests may be used to develop procedures for mating a spacecraft to its launch vehicle, emergency access and egress, maintenance support activities, and various transportation processes.

<span class="mw-page-title-main">Beta cloth</span> Fireproof textile

Beta cloth is a type of fireproof silica fiber cloth used in the manufacture of Apollo/Skylab A7L space suits, the Apollo Thermal Micrometeoroid Garment, the McDivitt Purse, and in other specialized applications.

<span class="mw-page-title-main">Skylab B</span> Proposed second US space station similar to Skylab

Skylab B was a proposed second US space station similar to Skylab that was planned to be launched by NASA for different purposes, mostly involving the Apollo–Soyuz Test Project, but was canceled due to lack of funding. Two Skylab modules were built in 1970 by McDonnell Douglas for the Skylab program, originally the Apollo Applications Program. The first was launched in 1973 and the other put in storage, while NASA considered how to use the remaining assets from Apollo.

<span class="mw-page-title-main">Orion (spacecraft)</span> American–European spacecraft class for the Artemis program

Orion is a partially reusable crewed spacecraft used in NASA's Artemis program. The spacecraft consists of a Crew Module (CM) space capsule designed by Lockheed Martin and the European Service Module (ESM) manufactured by Airbus Defence and Space. Capable of supporting a crew of four beyond low Earth orbit, Orion can last up to 21 days undocked and up to six months docked. It is equipped with solar panels, an automated docking system, and glass cockpit interfaces modeled after those used in the Boeing 787 Dreamliner. A single AJ10 engine provides the spacecraft's primary propulsion, while eight R-4D-11 engines, and six pods of custom reaction control system engines developed by Airbus, provide the spacecraft's secondary propulsion. Orion is intended to launch atop a Space Launch System (SLS) rocket, with a tower launch escape system.

<span class="mw-page-title-main">Exploration Flight Test-1</span> 2014 unmanned test flight of the Orion spacecraft by NASA

Exploration Flight Test-1 or EFT-1 was the first test flight of the crew module portion of the Orion Multi-Purpose Crew Vehicle. Without a crew, it was launched on December 5, 2014, at 12:05 UTC, by a Delta IV Heavy rocket from Space Launch Complex 37B at Cape Canaveral Space Force Station.

<span class="mw-page-title-main">European Service Module</span> Primary power and propulsion component of the Orion spacecraft

The European Service Module (ESM) is the service module component of the Orion spacecraft, serving as its primary power and propulsion component until it is discarded at the end of each mission. In January 2013, NASA announced that the European Space Agency (ESA) will contribute the service module for Artemis 1, based on the ESA's Automated Transfer Vehicle (ATV). It was delivered by Airbus Defence and Space in Bremen, in northern Germany to NASA at the end of 2018. After approval of the first module, the ESA will provide the ESMs from Artemis 2 to Artemis 6.

References

  1. Wilson, Jim. "NASA - NASA's Exploration Systems Architecture Study -- Final Report". www.nasa.gov.
  2. "Fire-Resistant Reinforcement Makes Steel Structures Sturdier". January 12, 2007. Archived from the original on 2007-01-12.
  3. Textron Systems History Archived November 30, 2010, at the Wayback Machine , 1984 History, "Textron acquires Avco, including Lycoming, to become Avco Systems Textron", 2010, accessed 2010-11-27.
  4. 1 2 3 4 5 Flight-Test Analysis Of Apollo Heat-Shield Material Using The Pacemaker Vehicle System NASA Technical Note D-4713, pp. 8, 1968-08, accessed 2010-12-26. "Avcoat 5026-39/HC-G is an epoxy novolac resin with special additives in a fiberglass honeycomb matrix. In fabrication, the empty honeycomb is bonded to the primary structure and the resin is gunned into each cell individually. ... The overall density of the material is 32 lb/ft3 (512 kg/m3). The char of the material is composed mainly of silica and carbon. It is necessary to know the amounts of each in the char because in the ablation analysis the silica is considered to be inert, but the carbon is considered to enter into exothermic reactions with oxygen. ... At 2160° R (1200° K), 54 percent by weight of the virgin material has volatilized and 46 percent has remained as char. ... In the virgin material, 25 percent by weight is silica, and since the silica is considered to be inert the char-layer composition becomes 6.7 lb/ft3 (107.4 kg/m3) of carbon and 8 lb/ft3 (128.1 kg/m3) of silica."
  5. 1 2 3 4 5 6 Apollo Experience Report - Thermal Protection Subsystem (Jan. 1974)
  6. "NASA - NASA Selects Material for Orion Spacecraft Heat Shield". www.nasa.gov.
  7. "Flightglobal.com - NASA's Orion heat shield decision expected this month (Oct 3, 2009)".
  8. "Company Watch - NASA. - Free Online Library". www.thefreelibrary.com.
  9. Clem, Kylie; Clem, Rachel (April 7, 2009). "NASA Selects Material for Orion Spacecraft Heat Shield". NASA News Release. NASA. Retrieved 2 April 2019.
  10. 1 2 Herridge, Linda. "Heat shield install brings Orion spacecraft closer to space". SpaceDaily. KSC News. Retrieved 2 April 2019.
  11. Prucey, Rachel; Clem, Kylie. "NASA Selects Material for Orion Spacecraft Heat Shield". NASA News Releases. NASA. Retrieved 3 April 2019.
  12. Kramer, Miriam. "NASA's 1st Orion Spaceship Gets World's Largest Heat Shield (Photos)". Space.com. Retrieved 3 April 2019.
  13. Prucey, Rachel; Clem, Kylie. "NASA Selects Material for Orion Spacecraft Heat Shield". NASA News. NASA. Retrieved 3 April 2019.
  14. "Aerothermodynamics HEOMD Projects". Nasa.gov. Retrieved 20 August 2020.
  15. Graves, Randolph A.; Witte, William G. (August 1968). "Flight-Test Analysis of Apollo Heat-shield Material Using the Peacemaker Vehicle System" (PDF). NASA Scientific and Technical Information (STI) Program. D (4137): 11–12. Retrieved 3 April 2019.
  16. Hoffpauir, Daniel. "An Alternate Orion Heat Shield Carrier Structural Design". NASA News. NASA. Retrieved 29 April 2019.
  17. Levin, Deborah. "Investigating the Thermochemical Response of Avcoat TPS from First Principles for Comparison with EFT-1 Data". NASA News. University of Illinois, Urbana-Champaign. Retrieved 3 April 2019.