AVCOAT 5026-39 is a NASA code for two versions of a specific ablative heat shield material originally created by Avco for the Apollo program. [1] [2] [3] It is composed of silica fibers in an epoxy novolac resin. The original AVCOAT was used for the Apollo Command Module heat shield. A reformulated version was used for the initial Orion heat shield and later for a redesigned Orion heat shield.
AVCOAT was used for the heat shield on NASA's Apollo command module. [4] In its final Apollo form, this material was called AVCOAT 5026–39.
Although AVCOAT was not used for the Space Shuttle orbiters, NASA again used the material for its Orion spacecraft [5] first for the initial Orion test and then for a different type of heat shield for the later Orions. The Avcoat used on the two types of Orion shield was reformulated to meet environmental legislation that was enacted after the end of Apollo. [6] [7]
AVCOAT was first used on the parts of the Apollo spacecraft orbiter and as a unit attached to the crew module. The heat shield is a honeycomb structure filled with the AVCOAT. NASA confirmed that this is made of silica fibers with an epoxy novolac resin filled in a fiberglass-phenolic manufactured directly onto the heat shield. [9] [10] The paste-like material was gunned into each cell of the fiberglass honeycomb individually. [11]
NASA's Apollo Flight Test Analysis, AVCOAT 5026-39/HC-G material was tested on the nose cone of a Pacemaker sounding rocket. [12] The temperature and ablation measurements were made at four locations on the nose cap. The report noted that the wear of the shield is due to the aerodynamic shear and heating rate. The report also noted that scientists believed that the ablation was done in a controlled manner.
To protect the Crew Module during Earth re-entry, the dish shaped AVCOAT heat shield ablator system was selected. NASA announced that this module would encounter temperature as high as 5,000 degrees Fahrenheit (2760 °C). [13] Licensed by Textron, [14] AVCOAT material is produced at New Orleans's Michoud Assembly Facility by Lockheed Martin. This ablative heat shield was installed at the base of the crew module to provide a controlled erosion moving heat away from the crew module into the atmosphere.
John Kowal, Orion's thermal protections systems manager at Johnson Space Center, discussed the biggest challenge with AVCOAT has been reviving the technology for manufacturing with similar performance as demonstrated in the Apollo Missions. [13] After the Apollo missions, Avcoat variants were produced and studied. Orion Chief Engineer requested the heat shield to be redesigned, [15] however the final design was not selected.
The Orion Crew Module was first designed for the NASA's Constellation program. The heat shield was designed and manufactured similarly to the Apollo version as a monolithic fiberglass honeycomb which was then filled with the AVCOAT. The honey comb consisted of 330,000 small cells. Each cell was individually filled with AVCOAT one at a time by a technician with a pressure gun, with the process taking more than six months for the shield. [16]
The EFT-1 mission performed two orbits of Earth providing the opportunity for Orion's systems to be tested. It took about four hours with the splash down in the ocean. [17] This was the only flight with this heat shield.
After the end of the Constellation program, Orion was adapted for use with the Space Launch System to replace the Space Shuttle program. This spacecraft was planned to take astronauts to the International Space Station (ISS) in 2015 and to the moon in 2024. However, Orion was never used for ISS. Its first flight after EFT-1 was the uncrewed Artemis I, which flew in 2022.
Manufacture of the EFT-1 heat shield was labor-intensive and there were concerns that the monolithic honeycomb design was inappropriate for the large Orion shield. Therefore, the shield was redesigned to use carefully shaped Avcoat blocks instead.
The AVCOAT material heat shield went through several rounds of testing before being chosen for the installation. During the investigation of the thermochemical response of Avcoat TPS (based on first principles for comparison with EFT-1 data), things being tested on the heat-shield included: modeling of gas transport, heat transfer, and TPS material regression. [18]
Orion's 16.5 feet AVCOAT heat shield was secured onto the Orion Crew Module using 68 bolts by Technicians at NASA's Kennedy Space Center (KSC) in Florida. This heat shield is covered in titanium truss and a composite substitute with an addition skin made of carbon fiber layers. Orion's heat-shield was designed and manufactured by Lockheed Martin. The heat shield is like pieces of a puzzle that all must fit together perfectly and the bolt fittings must be lined up. [14]
After the heat-shield's installation, access to components of the crew module became difficult or no longer accessible.
Skylab was the United States' first space station, launched by NASA, occupied for about 24 weeks between May 1973 and February 1974. It was operated by three trios of astronaut crews: Skylab 2, Skylab 3, and Skylab 4. Operations included an orbital workshop, a solar observatory, Earth observation and hundreds of experiments. Skylab's orbit eventually decayed and it disintegrated in the atmosphere on July 11, 1979, scattering debris across the Indian Ocean and Western Australia.
Atmospheric entry is the movement of an object from outer space into and through the gases of an atmosphere of a planet, dwarf planet, or natural satellite. Atmospheric entry may be uncontrolled entry, as in the entry of astronomical objects, space debris, or bolides. It may be controlled entry of a spacecraft that can be navigated or follow a predetermined course. Methods for controlled atmospheric entry, descent, and landing of spacecraft are collectively termed as EDL.
In engineering, a heat shield is a component designed to protect an object or a human operator from being burnt or overheated by dissipating, reflecting, and/or absorbing heat. The term is most often used in reference to exhaust heat management and to systems for dissipating frictional heat. Heat shields are used most commonly in the automotive and aerospace industries.
Phenol formaldehyde resins (PF) are synthetic polymers obtained by the reaction of phenol or substituted phenol with formaldehyde. Used as the basis for Bakelite, PFs were the first commercial synthetic resins. They have been widely used for the production of molded products including billiard balls, laboratory countertops, and as coatings and adhesives. They were at one time the primary material used for the production of circuit boards but have been largely replaced with epoxy resins and fiberglass cloth, as with fire-resistant FR-4 circuit board materials.
The Constellation program was a crewed spaceflight program developed by NASA, the space agency of the United States, from 2005 to 2009. The major goals of the program were "completion of the International Space Station" and a "return to the Moon no later than 2020" with a crewed flight to the planet Mars as the ultimate goal. The program's logo reflected the three stages of the program: the Earth (ISS), the Moon, and finally Mars—while the Mars goal also found expression in the name given to the program's booster rockets: Ares. The technological aims of the program included the regaining of significant astronaut experience beyond low Earth orbit and the development of technologies necessary to enable sustained human presence on other planetary bodies.
The Apollo spacecraft was composed of three parts designed to accomplish the American Apollo program's goal of landing astronauts on the Moon by the end of the 1960s and returning them safely to Earth. The expendable (single-use) spacecraft consisted of a combined command and service module (CSM) and an Apollo Lunar Module (LM). Two additional components complemented the spacecraft stack for space vehicle assembly: a spacecraft–LM adapter (SLA) designed to shield the LM from the aerodynamic stress of launch and to connect the CSM to the Saturn launch vehicle and a launch escape system (LES) to carry the crew in the command module safely away from the launch vehicle in the event of a launch emergency.
Skylab 3 was the second crewed mission to the first American space station, Skylab. The mission began on July 28, 1973, with the launch of NASA astronauts Alan Bean, Owen Garriott, and Jack Lousma in the Apollo command and service module on the Saturn IB rocket, and lasted 59 days, 11 hours and 9 minutes. A total of 1,084.7 astronaut-utilization hours were tallied by the Skylab 3 crew performing scientific experiments in the areas of medical activities, solar observations, Earth resources, and other experiments.
The Skylab Rescue Mission was an unflown rescue mission, planned as a contingency in the event of astronauts being stranded aboard the American Skylab space station. If flown, it would have used a modified Apollo Command Module that could be launched with a crew of two and return a crew of five.
The Apollo command and service module (CSM) was one of two principal components of the United States Apollo spacecraft, used for the Apollo program, which landed astronauts on the Moon between 1969 and 1972. The CSM functioned as a mother ship, which carried a crew of three astronauts and the second Apollo spacecraft, the Apollo Lunar Module, to lunar orbit, and brought the astronauts back to Earth. It consisted of two parts: the conical command module, a cabin that housed the crew and carried equipment needed for atmospheric reentry and splashdown; and the cylindrical service module which provided propulsion, electrical power and storage for various consumables required during a mission. An umbilical connection transferred power and consumables between the two modules. Just before reentry of the command module on the return home, the umbilical connection was severed and the service module was cast off and allowed to burn up in the atmosphere.
A space capsule is a spacecraft designed to transport cargo, scientific experiments, and/or astronauts to and from space. Capsules are distinguished from other spacecraft by the ability to survive reentry and return a payload to the Earth's surface from orbit or sub-orbit, and are distinguished from other types of recoverable spacecraft by their blunt shape, not having wings and often containing little fuel other than what is necessary for a safe return. Capsule-based crewed spacecraft such as Soyuz or Orion are often supported by a service or adapter module, and sometimes augmented with an extra module for extended space operations. Capsules make up the majority of crewed spacecraft designs, although one crewed spaceplane, the Space Shuttle, has flown in orbit.
A reentry capsule is the portion of a space capsule which returns to Earth following a spaceflight. The shape is determined partly by aerodynamics; a capsule is aerodynamically stable falling blunt end first, which allows only the blunt end to require a heat shield for atmospheric entry. A crewed capsule contains the spacecraft's instrument panel, limited storage space, and seats for crew members. Because a capsule shape has little aerodynamic lift, the final descent is via parachute, either coming to rest on land, at sea, or by active capture by an aircraft. In contrast, the development of spaceplane reentry vehicles attempts to provide a more flexible reentry profile.
Micarta is a brand name for composites of linen, canvas, paper, fiberglass, carbon fiber, or other fabric in a thermosetting plastic. It was originally used in electrical and decorative applications. Micarta was developed by George Westinghouse at least as early as 1910 using phenolic resins invented by Leo Baekeland. These resins were used to impregnate paper and cotton fabric which were cured under pressure and high temperature to produce laminates. In later years this manufacturing method included the use of fiberglass fabric, and other resin types were also used. Today Micarta high-pressure industrial laminates are produced with a wide variety of resins and fibers. The term has been used generically for most resin impregnated fiber compounds. Common uses of modern high-pressure laminates include electrical insulators, printed circuit board substrates, and knife handles.
The Altair spacecraft, previously known as the Lunar Surface Access Module or LSAM, was the planned lander spacecraft component of NASA's cancelled Constellation program. Astronauts would have used the spacecraft for landings on the Moon, which was intended to begin around 2019. The Altair spacecraft was planned to be used both for lunar sortie and lunar outpost missions.
A boilerplate spacecraft, also known as a mass simulator, is a nonfunctional craft or payload that is used to test various configurations and basic size, load, and handling characteristics of rocket launch vehicles. It is far less expensive to build multiple, full-scale, non-functional boilerplate spacecraft than it is to develop the full system. In this way, boilerplate spacecraft allow components and aspects of cutting-edge aerospace projects to be tested while detailed contracts for the final project are being negotiated. These tests may be used to develop procedures for mating a spacecraft to its launch vehicle, emergency access and egress, maintenance support activities, and various transportation processes.
Reusable spacecraft are spacecraft capable of repeated launch, atmospheric reentry, and landing or splashdown. This contrasts with expendable spacecraft which are designed to be discarded after use. Agencies operating reusable spacecraft aim to have lower costs and higher flight frequencies.
Skylab B was a proposed second US space station similar to Skylab that was planned to be launched by NASA for different purposes, mostly involving the Apollo–Soyuz Test Project, but was canceled due to lack of funding. Two Skylab modules were built in 1970 by McDonnell Douglas for the Skylab program, originally the Apollo Applications Program. The first was launched in 1973 and the other put in storage, while NASA considered how to use the remaining assets from Apollo.
Orion is a partially reusable crewed spacecraft used in NASA's Artemis program. The spacecraft consists of a Crew Module (CM) space capsule designed by Lockheed Martin that is paired with a European Service Module (ESM) manufactured by Airbus Defence and Space. Capable of supporting a crew of four beyond low Earth orbit, Orion can last up to 21 days undocked and up to six months docked. It is equipped with solar panels, an automated docking system, and glass cockpit interfaces. Orion is intended to be launched atop a Space Launch System (SLS) rocket, with a tower launch escape system.
Exploration Flight Test-1 or EFT-1 was a technology demonstration mission and the first flight test of the crew module portion of the Orion spacecraft. Without a crew, it was launched on 5 December 2014 at 12:05 UTC by a Delta IV Heavy rocket from Space Launch Complex 37B at the Cape Canaveral Air Force Station.
The European Service Module (ESM) is the service module component of the Orion spacecraft, serving as its primary power and propulsion component until it is discarded at the end of each mission. In January 2013, NASA announced that the European Space Agency (ESA) will contribute the service module for Artemis I, based on the ESA's Automated Transfer Vehicle (ATV). It was delivered by Airbus Defence and Space in Bremen, in northern Germany to NASA at the end of 2018. After approval of the first module, the ESA will provide the ESMs from Artemis II to Artemis VI.