Abelian 2-group

Last updated

In mathematics, an Abelian 2-group is a higher dimensional analogue of an Abelian group, in the sense of higher algebra, [1] which were originally introduced by Alexander Grothendieck while studying abstract structures surrounding Abelian varieties and Picard groups. [2] More concretely, they are given by groupoids which have a bifunctor which acts formally like the addition an Abelian group. Namely, the bifunctor has a notion of commutativity, associativity, and an identity structure. Although this seems like a rather lofty and abstract structure, there are several (very concrete) examples of Abelian 2-groups. In fact, some of which provide prototypes for more complex examples of higher algebraic structures, such as Abelian n-groups.

Contents

Definition

An Abelian 2-group is a groupoid (that is, a category in which every morphism is an isomorphism) with a bifunctor and natural transformations

which satisfy a host of axioms ensuring these transformations behave similarly to commutativity () and associativity for an Abelian group. One of the motivating examples of such a category comes from the Picard category of line bundles on a scheme (see below).

Examples

Picard category

For a scheme or variety , there is an Abelian 2-group whose objects are line bundles and morphisms are given by isomorphisms of line bundles. Notice over a given line bundle

since the only automorphisms of a line bundle are given by a non-vanishing function on . The additive structure is given by the tensor product on the line bundles. This makes is more clear why there should be natural transformations instead of equality of functors. For example, we only have an isomorphism of line bundles

but not direct equality. This isomorphism is independent of the line bundles chosen and are functorial hence they give the natural transformation

switching the components. The associativity similarly follows from the associativity of tensor products of line bundles.

Two term chain complexes

Another source for Picard categories is from two-term chain complexes of Abelian groups

which have a canonical groupoid structure associated to them. We can write the set of objects as the abelian group and the set of arrows as the set . Then, the source morphism of an arrow is the projection map

and the target morphism is

Notice this definition implies the automorphism group of any object is . Notice that if we repeat this construction for sheaves of abelian groups over a site (or topological space), we get a sheaf of Abelian 2-groups. It could be conjectured if this can be used to construct all such categories, but this is not the case. In fact, this construction must be generalized to spectra to give a precise generalization. [3] pg 88

Example of Abelian 2-group in algebraic geometry

One example is the cotangent complex for a local complete intersection scheme which is given by the two-term complex

for an embedding . There is a direct categorical interpretation of this Abelian 2-group from deformation theory using the Exalcomm category. [4]

Note that in addition to using a 2-term chain complex, would could instead consider a chain complex and construct an Abelian n-group (or infinity-group).

Abelian 2-group of morphisms

For a pair of Abelian 2-groups there is an associated Abelian 2-group of morphisms

whose objects are given by functors between these two categories, and the arrows are given by natural transformations. Moreover, the bifunctor on induces a bifunctor structure on this groupoid, giving it an Abelian 2-group structure.

Classifying abelian 2-groups

In order to classify abelian 2-groups, strict Picard categories using two-term chain complexes is not enough. One approach is in stable homotopy theory using spectra which only have two non-trivial homotopy groups. While studying an arbitrary Picard category, it becomes clear that there is additional data used to classify the structure of the category, it is given by the Postnikov invariant.

Postnikov invariant

For an Abelian 2-group and a fixed object the isomorphisms of the functors and given by the commutativity arrow

gives an element of the automorphism group which squares to , hence is contained in some . Sometimes this is suggestively written as . We can call this element and this invariant induces a morphism from the isomorphism classes of objects in , denoted , to , i.e. it gives a morphism

which corresponds to the Postnikov invariant. In particular, every Picard category given as a two-term chain complex has because they correspond under the Dold-Kan correspondence to simplicial abelian groups with topological realizations as the product of Eilenberg–MacLane spaces

For example, if we have a Picard category with and , there is no chain complex of Abelian groups giving these homology groups since can only be given by a projection

Instead this Picard category can be understood as a categorical realization of the truncated spectrum of the sphere spectrum where the only two non-trivial homotopy groups of the spectrum are in degrees and .

See also

Related Research Articles

In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.

In mathematics, a Lie groupoid is a groupoid where the set of objects and the set of morphisms are both manifolds, all the category operations are smooth, and the source and target operations

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves and the moduli stack of elliptic curves. Originally, they were introduced by Alexander Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. After Grothendieck developed the general theory of descent, and Giraud the general theory of stacks, the notion of algebraic stacks was defined by Michael Artin.

In mathematics, a gerbe is a construct in homological algebra and topology. Gerbes were introduced by Jean Giraud following ideas of Alexandre Grothendieck as a tool for non-commutative cohomology in degree 2. They can be seen as an analogue of fibre bundles where the fibre is the classifying stack of a group. Gerbes provide a convenient, if highly abstract, language for dealing with many types of deformation questions especially in modern algebraic geometry. In addition, special cases of gerbes have been used more recently in differential topology and differential geometry to give alternative descriptions to certain cohomology classes and additional structures attached to them.

In mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.

Fibred categories are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space X to another topological space Y is associated the pullback functor taking bundles on Y to bundles on X. Fibred categories formalise the system consisting of these categories and inverse image functors. Similar setups appear in various guises in mathematics, in particular in algebraic geometry, which is the context in which fibred categories originally appeared. Fibered categories are used to define stacks, which are fibered categories with "descent". Fibrations also play an important role in categorical semantics of type theory, and in particular that of dependent type theories.

This is a glossary of properties and concepts in category theory in mathematics.

<span class="mw-page-title-main">Complex torus</span>

In mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense. Here N must be the even number 2n, where n is the complex dimension of M.

In mathematics, a local system on a topological space X is a tool from algebraic topology which interpolates between cohomology with coefficients in a fixed abelian group A, and general sheaf cohomology in which coefficients vary from point to point. Local coefficient systems were introduced by Norman Steenrod in 1943.

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In mathematics, the cotangent complex is a common generalisation of the cotangent sheaf, normal bundle and virtual tangent bundle of a map of geometric spaces such as manifolds or schemes. If is a morphism of geometric or algebraic objects, the corresponding cotangent complex can be thought of as a universal "linearization" of it, which serves to control the deformation theory of . It is constructed as an object in a certain derived category of sheaves on using the methods of homotopical algebra.

This is a glossary of algebraic geometry.

In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets. It is an ∞-category generalization of a groupoid, a category in which every morphism is an isomorphism.

This is a glossary of properties and concepts in algebraic topology in mathematics.

In mathematics, derived noncommutative algebraic geometry, the derived version of noncommutative algebraic geometry, is the geometric study of derived categories and related constructions of triangulated categories using categorical tools. Some basic examples include the bounded derived category of coherent sheaves on a smooth variety, , called its derived category, or the derived category of perfect complexes on an algebraic variety, denoted . For instance, the derived category of coherent sheaves on a smooth projective variety can be used as an invariant of the underlying variety for many cases. Unfortunately, studying derived categories as geometric objects of themselves does not have a standardized name.

References

  1. Jibladze, Mamuka; Pirashvili, Teimuraz (2011-06-28). "Cohomology with coefficients in stacks of Picard categories". arXiv: 1101.2918 [math.AT].
  2. Grothendieck, Alexandrel. "Expose XVIII" (PDF). SGA 4. pp. 29–30.
  3. Hopkins, M. J.; Singer, I. M. (2005-08-24). "Quadratic functions in geometry, topology, and M-theory". J. Differ. Geom. 70 (3): 329–452. arXiv: math/0211216 . doi:10.4310/jdg/1143642908. S2CID   119170140.
  4. Olsson, Martin. "Tangent and Obstruction Theories" (PDF). pp. 13–18.