Absinthin

Last updated
Absinthin
Absinthin.svg
Absinthin-3D-balls.png
Names
IUPAC name
(1R,2R,5S,8S,9S,12S,13R,14S,15S,16R,17S,20S,21S,24S)-12,17-dihydroxy-3,8,12,17,21,25-hexamethyl-6,23-dioxaheptacyclo[13.9.2.01,16.02,14.04,13.05,9.020,24]hexacosa-3,25-diene-7,22-dione
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
PubChem CID
UNII
  • InChI=1S/C30H40O6/c1-12-11-18-20-21(30(12)24(18)29(6,34)10-8-17-14(3)27(32)36-25(17)30)15(4)19-22(20)28(5,33)9-7-16-13(2)26(31)35-23(16)19/h11,13-14,16-18,20-25,33-34H,7-10H2,1-6H3/t13-,14-,16-,17-,18-,20-,21-,22-,23-,24-,25-,28-,29-,30+/m0/s1 Yes check.svgY
    Key: PZHWYURJZAPXAN-JAJHBKHXSA-N Yes check.svgY
  • InChI=1S/C30H40O6/c1-12-11-18-20-21(30(12)24(18)29(6,34)10-8-17-14(3)27(32)36-25(17)30)15(4)19-22(20)28(5,33)9-7-16-13(2)26(31)35-23(16)19/h11,13-14,16-18,20-25,33-34H,7-10H2,1-6H3/t13-,14-,16-,17-,18-,20-,21-,22-,23-,24-,25-,28-,29-,30+/m0/s1
  • Key: PZHWYURJZAPXAN-JAJHBKHXSA-N
  • [H][C@@]12CC[C@](C)(O)[C@@]3([H])C(=C(C)[C@@]4([H])[C@]3([H])[C@H]3C=C(C)[C@@]44[C@@]5([H])OC(=O)[C@@H](C)[C@]5([H])CC[C@](C)(O)[C@]34[H])[C@@]1([H])OC(=O)[C@H]2C
  • O=C6O[C@@H]7[C@]25C(=C/[C@H]([C@@H]1[C@@H]3/C(=C(/C)[C@@H]12)[C@H]4OC(=O)[C@H]([C@@H]4CC[C@@]3(O)C)C)[C@H]5[C@](O)(C)CC[C@H]7[C@@H]6C)\C
Properties
C30H40O6
Molar mass 496.635
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Absinthin is a naturally produced triterpene lactone from the plant Artemisia absinthium (Wormwood). It constitutes one of the most bitter chemical agents responsible for absinthe's distinct taste. [1] The compound shows biological activity and has shown promise as an anti-inflammatory agent, [2] and should not be confused with thujone, a neurotoxin also found in Artemisia absinthium .

Contents

Chemical Structure

Absinthin's (1) complex structure is classified as a sesquiterpene lactone, meaning it belongs to a large category of natural products chemically derived from 5-carbon "building blocks" (3) derived from isoprene (4). The complete structure consists of two identical monomers (2) that are attached via a suspected naturally occurring Diels Alder reaction occurring at the alkenes on the 5-membered ring of the guaianolide.

Illustration of the isoprenoid components involved in the biosynthesis of Absinthin Absinthin components.png
Illustration of the isoprenoid components involved in the biosynthesis of Absinthin

Total synthesis

Total synthesis of (+)-Absinthin was conducted in 2004 by Zhang, et al. [3] The final yield reported for the synthesis was 18.6% over a course of 10 steps originating from Santonin (1), a commercially available reagent. The basis of the synthesis was the ring expansion of the original 6-membered carbon ring to the 7-membered ring, engendering the formation of the guaianolide monomer (2) scaffold, followed by Diels Alder coupling (3) and final stereochemical modifications resulting in (+)-Absinthin (4).

Illustration of the total synthesis conducted by Zhang, et al. of Absinthin Absinthin totalsynthesis.png
Illustration of the total synthesis conducted by Zhang, et al. of Absinthin

Biosynthesis

The full biosynthesis of Absinthin in Artemisia absinthium has not been elucidated, but a great portion of it can be inferred from the natural product precursors required to access Absinthin. While terpenoids like Absinthin can be said to consist of isoprene "units," isoprene by itself is too stable and does not react directly. Rather, the isoprene units are transferred and reacted as diphosphates. As the nomenclature for terpenes suggests, the first Absinthin precursor farnesyl diphosphate [A] contains 15 carbons, or 3 isoprene units. Diphosphate departure (1) generates a carbo-cation within the synthase, which can then be attacked by a carbon-carbon double bond at the opposing end of the molecule (2). The first stable intermediate in the biosynthesis pathway in Artemisia is likely Germacrene A [B], which has been previously identified in plant sesquiterpene pathways as a precursor to guaianolides. [4] From there, hydroxylation (3) occurs, followed by oxidation (4) to an aldehyde directly followed by further hydroxylation (5) and formation of a carboxyl group. It is important to note the disappearance of the terminal carbon-carbon double bond after (4), as the reduction of this bond in the final product differentiates the Absinthin monomer from other Germacrene A downstream products. This reduction does not necessarily occur at step (4), but may occur further downstream. With the carboxyl and hydroxyl group in position, the guaiano-lactone [C] formation via dehydration (7) can occur, as proposed for a general guaianolide pathway. [5] Formation of the Absinthin sesquiterpene guaianolide monomer [D] from hydroxylation and double bond rearrangement (8,9) is then postulated to directly precede dimerization to Absinthin [E] via a naturally occurring Diels-Alder reaction [10], which is likely facilitated by the associated synthase even though the reaction itself can occur in good yields spontaneously, [3] albeit slower than typical natural product biosynthesis.

Illustration of the proposed biosynthesis of Absinthin as interpreted from similar Guaianolide pathways in Artemisia Absinthin Biosynthesis3.png
Illustration of the proposed biosynthesis of Absinthin as interpreted from similar Guaianolide pathways in Artemisia

While no synthases specific to Artemisia absinthium have been sufficiently isolated to recreate this particular sesquiterpene formation in vitro, the general reaction scheme presented here portrays a likely scenario for Absinthin biosynthesis through the use of terpene intermediates utilized in the biosynthesis of Germacrene A, another sesquiterpene lactone. Enzymatic analogs from terpene biosynthesis which help rationalize the above proposed numbered biosynthetic steps are as follows:

  1. Farnesyl diphosphate departure via a generic sesquiterpene synthase [6]
  2. Ring closure via a generic sesquiterpene synthase (as for #1) [6]
  3. Hydroxylation of terminal allylic carbon via Germacrene A hydroxylase, a cytochrome P450 enzyme. [6]
  4. Oxidation of alcohol to aldol, via -germacrene A hydroxylase. [6]
  5. Hydroxylation of alcohol to carboxyl group, via Germacrene A hydroxylase. [6]
  6. NADPH-mediated hydroxylation of allylic carbon via a postulated hydroxylation to precede lactone ring closure [6]
  7. Lactone formation/ring closure [6]
  8. Hydroxylation at carbon-carbon tertiary double bond.
  9. Additional 5-membered ring formation/cyclization [4]
  10. Diels-Alder coupling via an unidentified enzyme in Artemisia absinthium.

Related Research Articles

<span class="mw-page-title-main">Thujone</span> Group of four possible stereoisomers found in various plants: a.o., absinthe and mint

Thujone is a ketone and a monoterpene that occurs predominantly in two diastereomeric (epimeric) forms: (−)-α-thujone and (+)-β-thujone.

The terpenoids, also known as isoprenoids, are a class of naturally occurring organic chemicals derived from the 5-carbon compound isoprene and its derivatives called terpenes, diterpenes, etc. While sometimes used interchangeably with "terpenes", terpenoids contain additional functional groups, usually containing oxygen. When combined with the hydrocarbon terpenes, terpenoids comprise about 80,000 compounds. They are the largest class of plant secondary metabolites, representing about 60% of known natural products. Many terpenoids have substantial pharmacological bioactivity and are therefore of interest to medicinal chemists.

<span class="mw-page-title-main">Terpene</span> Class of oily organic compounds found in plants

Terpenes are a class of natural products consisting of compounds with the formula (C5H8)n for n ≥ 2. Terpenes are major biosynthetic building blocks. Comprising more than 30,000 compounds, these unsaturated hydrocarbons are produced predominantly by plants, particularly conifers. In plants, terpenes and terpenoids are important mediators of ecological interactions, while some insects use some terpenes as a form of defense. Other functions of terpenoids include cell growth modulation and plant elongation, light harvesting and photoprotection, and membrane permeability and fluidity control.

<span class="mw-page-title-main">Bilobalide</span> Chemical compound

Bilobalide is a biologically active terpenic trilactone present in Ginkgo biloba.

Diterpenes are a class of terpenes composed of four isoprene units, often with the molecular formula C20H32. They are biosynthesized by plants, animals and fungi via the HMG-CoA reductase pathway, with geranylgeranyl pyrophosphate being a primary intermediate. Diterpenes form the basis for biologically important compounds such as retinol, retinal, and phytol. They are known to be antimicrobial and anti-inflammatory.

<span class="mw-page-title-main">Thapsigargin</span> Chemical compound

Thapsigargin is a non-competitive inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA). Structurally, thapsigargin is classified as a guaianolide, and is extracted from a plant, Thapsia garganica. It is a tumor promoter in mammalian cells.

<span class="mw-page-title-main">Santonin</span> Drug used to expel parasitic worms by paralyzing them

Santonin is a drug which was widely used in the past as an anthelminthic. It is an organic compound consisting of colorless flat prisms, turning slightly yellow from the action of light and soluble in alcohol, chloroform and boiling water.

<span class="mw-page-title-main">Zingiberene</span> Chemical compound

Zingiberene is a monocyclic sesquiterpene that is the predominant constituent of the oil of ginger, from which it gets its name. It can contribute up to 30% of the essential oils in ginger rhizomes. This is the compound that gives ginger its distinct flavoring.

<span class="mw-page-title-main">Sesquiterpene</span> Class of terpenes

Sesquiterpenes are a class of terpenes that consist of three isoprene units and often have the molecular formula C15H24. Like monoterpenes, sesquiterpenes may be cyclic or contain rings, including many unique combinations. Biochemical modifications such as oxidation or rearrangement produce the related sesquiterpenoids. A recent study conducted in the Cosmics Leaving Outdoor Droplets large cloud chamber at CERN, has identified sesquiterpenes—gaseous hydrocarbons that are released by plants—as potentially playing a major role in cloud formation in relatively pristine regions of the atmosphere.

<span class="mw-page-title-main">Camptothecin</span> Chemical compound

Camptothecin (CPT) is a topoisomerase inhibitor. It was discovered in 1966 by M. E. Wall and M. C. Wani in systematic screening of natural products for anticancer drugs. It was isolated from the bark and stem of Camptotheca acuminata, a tree native to China used in traditional Chinese medicine. It has been used clinically more recently in China for the treatment of gastrointestinal tumors. CPT showed anticancer activity in preliminary clinical trials, especially against breast, ovarian, colon, lung, and stomach cancers. However, it has low solubility and adverse effects have been reported when used therapeutically, so synthetic and medicinal chemists have developed numerous syntheses of camptothecin and various derivatives to increase the benefits of the chemical, with good results. Four CPT analogues have been approved and are used in cancer chemotherapy today: topotecan, irinotecan, belotecan, and trastuzumab deruxtecan. Camptothecin has also been found in other plants including Chonemorpha fragrans.

<span class="mw-page-title-main">Bornyl diphosphate synthase</span>

In enzymology, bornyl diphosphate synthase (BPPS) (EC 5.5.1.8) is an enzyme that catalyzes the chemical reaction

The enzyme amorpha-4,11-diene synthase (ADS) catalyzes the chemical reaction

The enzyme germacrene-A synthase (EC 4.2.3.23) catalyzes the chemical reaction

Vetispiradiene synthase is an enzyme from Egyptian henbane that catalyzes the following chemical reaction:

<span class="mw-page-title-main">Capsidiol</span> Chemical compound

Capsidiol is a terpenoid compound that accumulates in tobacco Nicotiana tabacum and chili pepper Capsicum annuum in response to fungal infection. Capsidiol is categorized under the broad term of phytoalexin, a class of low molecular weight plant secondary metabolites that are produced during infection. Phytoalexins are also characterized as a part of a two pronged response to infection which involves a short term response consisting of production of free radicals near the site of infection and a long term response involving the production of hormones and an increase in enzymes to biosynthesize phytoalexins such as capsidiol.

<span class="mw-page-title-main">Juvabione</span> Chemical compound

Juvabione, historically known as the paper factor, is the methyl ester of todomatuic acid. Both are sesquiterpenes (C15) found in the wood of true firs of the genus Abies. They occur naturally as part of a mixture of sesquiterpenes based upon the bisabolane scaffold. Sesquiterpenes of this family are known as insect juvenile hormone analogues (IJHA) because of their ability to mimic juvenile activity in order to stifle insect reproduction and growth. These compounds play important roles in conifers as the second line of defense against insect induced trauma and fungal pathogens.

<span class="mw-page-title-main">Costunolide</span> Chemical compound

(+)-Costunolide is a naturally occurring sesquiterpene lactone, first isolated in Saussurea costus roots in 1960. It is also found in lettuce.

<span class="mw-page-title-main">Geosmin synthase</span>

Geosmin synthase or germacradienol-geosmin synthase designates a class of bifunctional enzymes that catalyze the conversion of farnesyl diphosphate (FPP) to geosmin, a volatile organic compound known for its earthy smell. The N-terminal half of the protein catalyzes the conversion of farnesyl diphosphate to germacradienol and germacrene D, followed by the C-terminal-mediated conversion of germacradienol to geosmin. The conversion of FPP to geosmin was previously thought to involve multiple enzymes in a biosynthetic pathway.

5-Epiaristolochene synthase is an enzyme with systematic name (2E,6E)-farnesyl-diphosphate diphosphate-lyase ( -5-epiaristolochene-forming). This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Arglabin</span> Chemical compound

Arglabin is a sesquiterpene lactone belonging to the guaianolide subclass bearing a 5,7,5-tricyclic ring system which is known to inhibit farnesyl transferase. It is characterized by an epoxide on the cycloheptane as well as an exocyclic methylene group that is conjugated with the carbonyl of the lactone. Arglabin is extracted from Artemisia glabella, a species of wormwood, found in the Karaganda Region of Kazakhstan. Arglabin and its derivatives are biologically active and demonstrate promising antitumor activity and cytoxocity against varying tumor cell lines.

References

  1. Lachenmeier DW, Walch SG, Padosch SA, Kröner LU (2006). "Absinthe--a review". Crit Rev Food Sci Nutr. 46 (5): 365–77. doi:10.1080/10408690590957322. PMID   16891209. S2CID   43251156.
  2. Bazhenova E.D., Ashrafova R. A., Aliev K. U., Tulyaganov, P. D. (1977). Chem. Abstr. 87: 193909f.{{cite journal}}: CS1 maint: untitled periodical (link)
  3. 1 2 3 Zhang W, Luo S, Fang F, et al. (January 2005). "Total synthesis of absinthin". J. Am. Chem. Soc. 127 (1): 18–9. doi:10.1021/ja0439219. PMID   15631427.
  4. 1 2 de Kraker JW, Franssen MC, de Groot A, Konig WA, Bouwmeester HJ (August 1998). "(+)-Germacrene A Biosynthesis : The Committed Step in the Biosynthesis of Bitter Sesquiterpene Lactones in Chicory". Plant Physiol. 117 (4): 1381–92. doi:10.1104/pp.117.4.1381. PMC   34902 . PMID   9701594.
  5. Kelsey, R.G., Shafizadeh, F. (1979). "Sesquiterpene Lactones and Systematics of the Genus Artemisia". Phytochemistry. 18 (10): 1591–1611. Bibcode:1979PChem..18.1591K. doi:10.1016/0031-9422(79)80167-3.[ dead link ]
  6. 1 2 3 4 5 6 7 de Kraker JW, Franssen MC, Dalm MC, de Groot A, Bouwmeester HJ (April 2001). "Biosynthesis of Germacrene A Carboxylic Acid in Chicory Roots. Demonstration of a Cytochrome P450 (+)-Germacrene A Hydroxylase and NADP+-Dependent Sesquiterpenoid Dehydrogenase(s) Involved in Sesquiterpene Lactone Biosynthesis". Plant Physiol. 125 (4): 1930–40. doi:10.1104/pp.125.4.1930. PMC   88848 . PMID   11299372.