Acetylferrocene

Last updated
Acetylferrocene
Acetylferrocene.svg
Crystals of acetylferrocene.jpg
Names
IUPAC name
Acetylferrocene
Other names
Acetylferrocene
Identifiers
3D model (JSmol)
ECHA InfoCard 100.013.676 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
RTECS number
  • OB3700000
  • InChI=1S/C7H7O.C5H5.Fe/c1-6(8)7-4-2-3-5-7;1-2-4-5-3-1;/h2-5H,1H3;1-5H;
    Key: PHMAOJNZIFULOG-UHFFFAOYSA-N
  • CC(=O)[C]1[CH][CH][CH][CH]1.[CH]1[CH][CH][CH][CH]1.[Fe]
Properties
[Fe(C5H4COCH3)(C5H5)]
Molar mass 228.07 g/mol
AppearanceRed brown crystal
Density 1.014 g/mL
Melting point 81 to 83 °C (178 to 181 °F; 354 to 356 K) [1]
Boiling point 161 to 163 °C (322 to 325 °F; 434 to 436 K) (4 mmHg)
Insoluble in water, soluble in most organic solvents
Hazards
GHS labelling:
GHS-pictogram-skull.svg
Danger
H300
P264, P301+P310
NFPA 704 (fire diamond)
NFPA 704.svgHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
4
1
0
Lethal dose or concentration (LD, LC):
25 mg kg−1 (oral, rat)
50 mg kg−1 (oral, mouse) [2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Acetylferrocene is the organoiron compound with the formula (C5H5)Fe(C5H4COCH3). It consists of ferrocene substituted by an acetyl group on one of the cyclopentadienyl rings. It is an orange, air-stable solid that is soluble in organic solvents.

Contents

Preparation and reactions

Acetylferrocene is prepared by Friedel-Crafts acylation of ferrocene, usually with acetic anhydride (Ac2O):

Fe(C5H5)2 + Ac2O → (C5H5)Fe(C5H4Ac) + HOAc

The experiment is often conducted in the instructional laboratory to illustrate acylation as well as chromatographic separations. [3] [4]

Acetylferrocene can be converted to many derivatives, e.g., reduction to the chiral alcohol (C5H5)Fe(C5H4CH(OH)Me) and precursor to vinylferrocene. The oxidized derivative, acetylferrocenium, is used as a 1e-oxidant in the research laboratory. [5]

Related Research Articles

<span class="mw-page-title-main">Metallocene</span> Type of compound having a metal center

A metallocene is a compound typically consisting of two cyclopentadienyl anions (C
5
H
5
, abbreviated Cp) bound to a metal center (M) in the oxidation state II, with the resulting general formula (C5H5)2M. Closely related to the metallocenes are the metallocene derivatives, e.g. titanocene dichloride or vanadocene dichloride. Certain metallocenes and their derivatives exhibit catalytic properties, although metallocenes are rarely used industrially. Cationic group 4 metallocene derivatives related to [Cp2ZrCH3]+ catalyze olefin polymerization.

Ferrocene is an organometallic compound with the formula Fe(C5H5)2. The molecule is a complex consisting of two cyclopentadienyl rings sandwiching a central iron atom. It is an orange solid with a camphor-like odor that sublimes above room temperature, and is soluble in most organic solvents. It is remarkable for its stability: it is unaffected by air, water, strong bases, and can be heated to 400 °C without decomposition. In oxidizing conditions it can reversibly react with strong acids to form the ferrocenium cation Fe(C5H5)+2. Ferrocene and the ferrocenium cation are sometimes abbreviated as Fc and Fc+ respectively.

Cyclopentadiene is an organic compound with the formula C5H6. It is often abbreviated CpH because the cyclopentadienyl anion is abbreviated Cp.

<span class="mw-page-title-main">Acetic anhydride</span> Organic compound with formula (CH₃CO)₂O

Acetic anhydride, or ethanoic anhydride, is the chemical compound with the formula (CH3CO)2O. Commonly abbreviated Ac2O, it is the simplest isolable anhydride of a carboxylic acid and is widely used as a reagent in organic synthesis. It is a colorless liquid that smells strongly of acetic acid, which is formed by its reaction with moisture in the air.

<span class="mw-page-title-main">Cobaltocene</span> Chemical compound

Cobaltocene, known also as bis(cyclopentadienyl)cobalt(II) or even "bis Cp cobalt", is an organocobalt compound with the formula Co(C5H5)2. It is a dark purple solid that sublimes readily slightly above room temperature. Cobaltocene was discovered shortly after ferrocene, the first metallocene. Due to the ease with which it reacts with oxygen, the compound must be handled and stored using air-free techniques.

<span class="mw-page-title-main">Iron pentacarbonyl</span> Chemical compound

Iron pentacarbonyl, also known as iron carbonyl, is the compound with formula Fe(CO)5. Under standard conditions Fe(CO)5 is a free-flowing, straw-colored liquid with a pungent odour. Older samples appear darker. This compound is a common precursor to diverse iron compounds, including many that are useful in small scale organic synthesis.

<span class="mw-page-title-main">Hapticity</span> Number of contiguous atoms in a ligand that bond to the central atom in a coordination complex

In coordination chemistry, hapticity is the coordination of a ligand to a metal center via an uninterrupted and contiguous series of atoms. The hapticity of a ligand is described with the Greek letter η ('eta'). For example, η2 describes a ligand that coordinates through 2 contiguous atoms. In general the η-notation only applies when multiple atoms are coordinated. In addition, if the ligand coordinates through multiple atoms that are not contiguous then this is considered denticity, and the κ-notation is used once again. When naming complexes care should be taken not to confuse η with μ ('mu'), which relates to bridging ligands.

<span class="mw-page-title-main">Cyclobutadieneiron tricarbonyl</span> Chemical compound

Cyclobutadieneiron tricarbonyl is an organoiron compound with the formula Fe(C4H4)(CO)3. It is a yellow oil that is soluble in organic solvents. It has been used in organic chemistry as a precursor for cyclobutadiene, which is an elusive species in the free state.

<span class="mw-page-title-main">1,1'-Bis(diphenylphosphino)ferrocene</span> Chemical compound

1,1-Bis(diphenylphosphino)ferrocene, commonly abbreviated dppf, is an organophosphorus compound commonly used as a ligand in homogeneous catalysis. It contains a ferrocene moiety in its backbone, and is related to other bridged diphosphines such as 1,2-bis(diphenylphosphino)ethane (dppe).

Ruthenocene is an organoruthenium compound with the formula (C5H5)2Ru. This pale yellow, volatile solid is classified as a sandwich compound and more specifically, as a metallocene.

<span class="mw-page-title-main">Sodium cyclopentadienide</span> Chemical compound

Sodium cyclopentadienide is an organosodium compound with the formula C5H5Na. The compound is often abbreviated as NaCp, where Cp is the cyclopentadienide anion. Sodium cyclopentadienide is a colorless solid, although samples often are pink owing to traces of oxidized impurities.

Organoiron chemistry is the chemistry of iron compounds containing a carbon-to-iron chemical bond. Organoiron compounds are relevant in organic synthesis as reagents such as iron pentacarbonyl, diiron nonacarbonyl and disodium tetracarbonylferrate. Although iron is generally less active in many catalytic applications, it is less expensive and "greener" than other metals. Organoiron compounds feature a wide range of ligands that support the Fe-C bond; as with other organometals, these supporting ligands prominently include phosphines, carbon monoxide, and cyclopentadienyl, but hard ligands such as amines are employed as well.

<span class="mw-page-title-main">Ferrocenium tetrafluoroborate</span> Chemical compound

Ferrocenium tetrafluoroborate is an organometallic compound with the formula [Fe(C5H5)2]BF4. This salt is composed of the cation [Fe(C5H5)2]+ and the tetrafluoroborate anion (BF
4
). The related hexafluorophosphate is also a popular reagent with similar properties. The ferrocenium cation is often abbreviated Fc+ or Cp2Fe+. The salt is deep blue in color and paramagnetic. Ferrocenium salts are sometimes used as one-electron oxidizing agents, and the reduced product, ferrocene, is inert and readily separated from ionic products. The ferrocene–ferrocenium couple is often used as a reference in electrochemistry. The standard potential of ferrocene-ferrocenium is dependent on specific electrochemical conditions.

<span class="mw-page-title-main">Rhodocene</span> Organometallic chemical compound

Rhodocene is a chemical compound with the formula [Rh(C5H5)2]. Each molecule contains an atom of rhodium bound between two planar aromatic systems of five carbon atoms known as cyclopentadienyl rings in a sandwich arrangement. It is an organometallic compound as it has (haptic) covalent rhodium–carbon bonds. The [Rh(C5H5)2] radical is found above 150 °C (302 °F) or when trapped by cooling to liquid nitrogen temperatures (−196 °C [−321 °F]). At room temperature, pairs of these radicals join via their cyclopentadienyl rings to form a dimer, a yellow solid.

<span class="mw-page-title-main">Decamethylferrocene</span> Chemical compound

Decamethylferrocene or bis(pentamethylcyclopentadienyl)iron(II) is a chemical compound with formula Fe(C5(CH3)5)2 or C20H30Fe. It is a sandwich compound, whose molecule has an iron(II) cation Fe2+ attached by coordination bonds between two pentamethylcyclopentadienyl anions (Cp*, (CH3)5C−5). It can also be viewed as a derivative of ferrocene, with a methyl group replacing each hydrogen atom of its cyclopentadienyl rings. The name and formula are often abbreviated to DmFc, Me10Fc or FeCp*2.

<span class="mw-page-title-main">Cyclopentadienyliron dicarbonyl iodide</span> Chemical compound

Cyclopentadienyliron dicarbonyl iodide is an organoiron compound with the formula (C5H5)Fe(CO)2I. It is a dark brown solid that is soluble in common organic solvents. (C5H5)Fe(CO)2I, or FpI as it is often known, is an intermediate for the preparation of other organoiron compounds such as in ferraboranes.

<span class="mw-page-title-main">Biferrocene</span> Organometallic compound

Biferrocene is the organometallic compound with the formula [(C5H5)Fe(C5H4)]2. It is the product of the formal dehydrocoupling of ferrocene, analogous the relationship between biphenyl and benzene. It is an orange, air-stable solid that is soluble in nonpolar organic solvents.

<span class="mw-page-title-main">Vinylferrocene</span> Chemical compound

Vinylferrocene is the organometallic compound with the formula (C5H5)Fe(C5H4CH=CH2). It is a derivative of ferrocene, with a vinyl group attached to one cyclopentadienyl ligand. As the ferrocene analogue of styrene, it is the precursor to some polyferrocenes. It is an orange, air-stable oily solid that is soluble in nonpolar organic solvents.

<i>N</i>,<i>N</i>-Dimethylaminomethylferrocene Chemical compound

N,N-Dimethylaminomethylferrocene is the dimethylaminomethyl derivative of ferrocene, (C5H5)Fe(C5H4CH2N(CH3)2. It is an air-stable, dark-orange syrup that is soluble in common organic solvents. The compound is prepared by the reaction of ferrocene with formaldehyde and dimethylamine:

<span class="mw-page-title-main">Ferrocenecarboxylic acid</span> Chemical compound

Ferrocenecarboxylic acid is the organoiron compound with the formula (C5H5)Fe(C5H4CO2H). It is the simplest carboxylic acid derivative of ferrocene. It can be prepared in two steps from ferrocene by acylation with a 2-chlorobenzoyl chloride followed by hydrolysis.

References

  1. Sigma-Aldrich Co., Acetylferrocene. Retrieved on 2013-07-20.
  2. http://msds.chem.ox.ac.uk/AC/acetylferrocene.html [ dead link ]
  3. Bozak, R. E. "Acetylation of ferrocene: A chromatography experiment for elementary organic laboratory" J. Chem. Educ., 1966, volume 43, p 73. doi : 10.1021/ed043p73
  4. Donahue, C. J., Donahue, E. R., "Beyond Acetylferrocene: The Synthesis and NMR Spectra of a Series of Alkanoylferrocene Derivatives", Journal of Chemical Education 2013, volume 90, pp. 1688. doi : 10.1021/ed300544n
  5. Connelly, N. G., Geiger, W. E., "Chemical Redox Agents for Organometallic Chemistry", Chem. Rev. 1996, 96, 877. doi : 10.1021/cr940053x