Acoustic wayfinding

Last updated

Acoustic wayfinding is the practice of using the auditory system to orient oneself and navigate physical space. It is commonly used by the visually impaired, allowing them to retain their mobility without relying on visual cues from their environment.

Contents

Method

Acoustic wayfinding involves using a variety of auditory cues to create a mental map of the surrounding environment. This can include a number of techniques: navigating by sounds from the natural environment, such as pedestrian crossing signals; echolocation, or creating sound waves (by tapping a cane or making clicking noises) to determine the location and size of surrounding objects; and memorizing the unique sounds in a given space to recognize it again later. For the visually impaired, these auditory cues become the primary substitute for visual information about the direction and distance of people and objects in their environment. [1]

Visually impaired person using a cane to navigate a city street Detectable Warnings.jpg
Visually impaired person using a cane to navigate a city street

However, there are a number of common obstacles to acoustic wayfinding techniques: noisy outdoor environments can challenge an individual's ability to identify useful sounds, while indoors, the architecture may not provide an acoustic response which is useful for orientation and destination. Among the most difficult environments to navigate for individuals who rely on acoustic wayfinding are crowded places like department stores, transit stations, and hotel lobbies, or open spaces like parking lots and parks, where distinct sound cues are lacking. This means that, in practice, individuals who navigate primarily by acoustic wayfinding must also rely on a number of other senses – including touch, smell, and residual sight – to supplement auditory cues. [2] These different methods can be used in tandem. For example, visually impaired individuals often use a white cane, not only to physically locate obstacles in front of them, but also to acoustically get a sense of what those obstacles may be. [3] By tapping the cane, they also create sound waves that help them to gauge the location and size of nearby objects.

Importance in architecture

Recently[ when? ], architects and acousticians have begun to address the problems faced by people who rely primarily on acoustic wayfinding to navigate urban spaces. [4] The primary work on the architectural implications of acoustic wayfinding comes from a collaboration between Christopher Downey, an architect who went blind in 2008 and has since worked to improve architectural design for the visually impaired, [5] and Joshua Cushner, who leads the Acoustic consulting practice for engineering design firm Arup in San Francisco. Their work focuses on how to plan new facilities to include sensible systems of sound markers and architectural spaces which provide orientation through acoustic cues. On 20 September 2011, the San Francisco chapter of the American Institute of Architects organized an acoustic wayfinding discussion and walking tour, [6] led by Chris Downey and Joshua Cushner. The purpose of the tour was to highlight the ways that visual impaired people associate sounds with particular buildings and locations, creating "sound markers" that help them find their way on the street or indoors, and to discuss implementing more unique sound markers into urban design projects. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Animal echolocation</span> Method used by several animal species to determine location using sound

Echolocation, also called bio sonar, is a biological active sonar used by several animal groups, both in the air and underwater. Echolocating animals emit calls and listen to the echoes of those calls that return from various objects near them. They use these echoes to locate and identify the objects. Echolocation is used for navigation, foraging, and hunting prey.

<span class="mw-page-title-main">Agnosia</span> Inability to process sensory information

Agnosia is a neurological disorder characterized by an inability to process sensory information. Often there is a loss of ability to recognize objects, persons, sounds, shapes, or smells while the specific sense is not defective nor is there any significant memory loss. It is usually associated with brain injury or neurological illness, particularly after damage to the occipitotemporal border, which is part of the ventral stream. Agnosia only affects a single modality, such as vision or hearing. More recently, a top-down interruption is considered to cause the disturbance of handling perceptual information.

An audio game is an electronic game played on a device such as a personal computer. It is similar to a video game save that there is audible and tactile feedback but not visual.

Human echolocation is the ability of humans to detect objects in their environment by sensing echoes from those objects, by actively creating sounds: for example, by tapping their canes, lightly stomping their foot, snapping their fingers, or making clicking noises with their mouths. People trained to orient by echolocation can interpret the sound waves reflected by nearby objects, accurately identifying their location and size.

<span class="mw-page-title-main">Spatial memory</span> Memory about ones environment and spatial orientation

In cognitive psychology and neuroscience, spatial memory is a form of memory responsible for the recording and recovery of information needed to plan a course to a location and to recall the location of an object or the occurrence of an event. Spatial memory is necessary for orientation in space. Spatial memory can also be divided into egocentric and allocentric spatial memory. A person's spatial memory is required to navigate in a familiar city. A rat's spatial memory is needed to learn the location of food at the end of a maze. In both humans and animals, spatial memories are summarized as a cognitive map.

Sound localization is a listener's ability to identify the location or origin of a detected sound in direction and distance.

<span class="mw-page-title-main">Retirement home</span> Housing facility for the elderly persons

A retirement home – sometimes called an old people's home,old folks' home, or old age home, although old people's home can also refer to a nursing home – is a multi-residence housing facility intended for the elderly. Typically, each person or couple in the home has an apartment-style room or suite of rooms with an en-suite bathroom. Additional facilities are provided within the building. This can include facilities for meals, gatherings, recreation activities, and some form of health or hospital care. A place in a retirement home can be paid for on a rental basis, like an apartment, or can be bought in perpetuity on the same basis as a condominium.

<span class="mw-page-title-main">Wayfinding</span> Ways in which people navigate from place to place

Wayfinding encompasses all of the ways in which people orient themselves in physical space and navigate from place to place. Wayfinding software is a self-service computer program that helps users to find a location, usually used indoors and installed on interactive kiosks or smartphones.

Sensory substitution is a change of the characteristics of one sensory modality into stimuli of another sensory modality.

<span class="mw-page-title-main">Crypsis</span> Aspect of animal behaviour and morphology

In ecology, crypsis is the ability of an animal or a plant to avoid observation or detection by other animals. It may be a predation strategy or an antipredator adaptation. Methods include camouflage, nocturnality, subterranean lifestyle and mimicry. Crypsis can involve visual, olfactory or auditory concealment. When it is visual, the term cryptic coloration, effectively a synonym for animal camouflage, is sometimes used, but many different methods of camouflage are employed in nature.

<span class="mw-page-title-main">GPS for the visually impaired</span>

Since the Global Positioning System (GPS) was introduced in the late 1980s there have been many attempts to integrate it into a navigation-assistance system for blind and visually impaired people.

<span class="mw-page-title-main">Acoustic location</span> Use of reflected sound waves to locate objects

Acoustic location is a method of determining the position of an object or sound source by using sound waves. Location can take place in gases, liquids, and in solids.

In perceptual psychology, a sensory cue is a statistic or signal that can be extracted from the sensory input by a perceiver, that indicates the state of some property of the world that the perceiver is interested in perceiving.

Active sensory systems are sensory receptors that are activated by probing the environment with self-generated energy. Examples include echolocation of bats and dolphins and insect antennae. Using self-generated energy allows more control over signal intensity, direction, timing and spectral characteristics. By contrast, passive sensory systems involve activation by ambient energy. For example, human vision relies on using light from the environment.

<span class="mw-page-title-main">Orientation and Mobility</span>

Orientation and Mobility, or O&M, is a profession which focuses on instructing individuals who are blind or visually impaired with safe and effective travel through their environment. Individual O&M specialists can work for schools, government agencies or work as private contractors. The Academy for Certification of Vision Rehabilitation and Education Professionals (ACVREP) offers certification for vision rehabilitation professionals in the United States.

In computing, 3D interaction is a form of human-machine interaction where users are able to move and perform interaction in 3D space. Both human and machine process information where the physical position of elements in the 3D space is relevant.

<span class="mw-page-title-main">Visual capture</span>

In psychology, visual capture is the dominance of vision over other sense modalities in creating a percept. In this process, the visual senses influence the other parts of the somatosensory system, to result in a perceived environment that is not congruent with the actual stimuli. Through this phenomenon, the visual system is able to disregard what other information a different sensory system is conveying, and provide a logical explanation for whatever output the environment provides. Visual capture allows one to interpret the location of sound as well as the sensation of touch without actually relying on those stimuli but rather creating an output that allows the individual to perceive a coherent environment.

In cognitive psychology, spatial cognition is the acquisition, organization, utilization, and revision of knowledge about spatial environments. It is most about how animals, including humans, behave within space and the knowledge they built around it, rather than space itself. These capabilities enable individuals to manage basic and high-level cognitive tasks in everyday life. Numerous disciplines work together to understand spatial cognition in different species, especially in humans. Thereby, spatial cognition studies also have helped to link cognitive psychology and neuroscience. Scientists in both fields work together to figure out what role spatial cognition plays in the brain as well as to determine the surrounding neurobiological infrastructure.

Auditory feedback (AF) is an aid used by humans to control speech production and singing by helping the individual verify whether the current production of speech or singing is in accordance with his acoustic-auditory intention. This process is possible through what is known as the auditory feedback loop, a three-part cycle that allows individuals to first speak, then listen to what they have said, and lastly, correct it when necessary. From the viewpoint of movement sciences and neurosciences, the acoustic-auditory speech signal can be interpreted as the result of movements of speech articulators. Auditory feedback can hence be inferred as a feedback mechanism controlling skilled actions in the same way that visual feedback controls limb movements.

<span class="mw-page-title-main">Wayfinding (urban or indoor)</span>

Wayfinding has been used in the context of architecture to refer to the user experience of orientation and navigating within the built environment.

References

  1. Reginald G. Golledge; Robert John Stimson (1997). Spatial behavior: a geographic perspective. Guilford Press. p. 508. ISBN   978-1-57230-050-7.
  2. Juval Portugali (1996). The construction of cognitive maps. Springer. p. 230. ISBN   978-0-7923-3949-6.
  3. Barry Truax (2001). Acoustic communication. Greenwood Publishing Group. p. 21. ISBN   978-1-56750-536-8.
  4. Arthur, Paul and Romedi Passini (1992). Wayfinding: people, signs, and architecture. McGraw-Hill Book Co. ISBN   0-07-551016-2.
  5. McGray, Douglas (October 2010). "Design Within Reach: A blind architect relearns his craft". The Atlantic Monthly Group. Retrieved 24 September 2011.
  6. Britt, Aaron (5 September 2011). "SF's Architecture and the City". Dwell Media LLC. Retrieved 24 September 2011.
  7. "Architecture and the city festival guide" (Press release). AIASF. September 2011.