Accessibility

Last updated
Elevator buttons with Braille markings Accessibility Braille Elevator.jpg
Elevator buttons with Braille markings
The public transport system in Curitiba, Brazil, offers universal access via wheelchair lifts. Curitiba 10 2006 05 RIT.jpg
The public transport system in Curitiba, Brazil, offers universal access via wheelchair lifts.

Accessibility is the design of products, devices, services, vehicles, or environments so as to be usable by people with disabilities. [1] The concept of accessible design and practice of accessible developments ensures both "direct access" (i.e. unassisted) and "indirect access" meaning compatibility with a person's assistive technology (for example, computer screen readers). [2]

Contents

Accessibility can be viewed as the "ability to access" and benefit from some system or entity. The concept focuses on enabling access for people with disabilities, or enabling access through the use of assistive technology; however, research and development in accessibility brings benefits to everyone. [3] [4] [5] [6] [7] Therefore, an accessible society should eliminate digital divide or knowledge divide.

Accessibility is not to be confused with usability, which is the extent to which a product (such as a device, service, or environment) can be used by specified users to achieve specified goals with effectiveness, efficiency, and satisfaction in a specified context of use. [8]

Accessibility is also strongly related to universal design, the process of creating products that are usable by the widest possible range of people, operating within the widest possible range of situations. [9] Universal design typically provides a single general solution that can accommodate people with disabilities as well as the rest of the population. By contrast, accessible design is focused on ensuring that there are no barriers to accessibility for all people, including those with disabilities.

Legislation

International Symbol of Access denotes area with access for those with disabilities. Handicapped Accessible sign.svg
International Symbol of Access denotes area with access for those with disabilities.

The disability rights movement advocates equal access to social, political, and economic life which includes not only physical access but access to the same tools, services, organizations and facilities as non-disabled people (e.g., museums [10] [11] ). Article 9 of the United Nations Convention on the Rights of Persons with Disabilities commits signatories to provide for full accessibility in their countries. [12]

While it is often used to describe facilities or amenities to assist people with impaired mobility, through the provision of facilities like wheelchair ramps, the term can include other types of disability. Accessible facilities therefore extend to areas such as Braille signage, elevators, audio signals at pedestrian crossings, walkway contours, website accessibility and accessible publishing. [13]

In the United States, government mandates including Section 508, WCAG, [14] DDA are all enforcing practices to standardize accessibility testing engineering in product development.

Accessibility modifications may be required to enable persons with disabilities to gain access to education, employment, transportation, housing, recreation, or even simply to exercise their right to vote.

National legislation

Various countries have legislation requiring physical accessibility which are (in order of enactment):

Ramps and mobi-mats enable wheelchair users to visit a sandy seashore. Beach accessibility mobi-mat and wheelchair ramp.jpg
Ramps and mobi-mats enable wheelchair users to visit a sandy seashore.

Legislation may also be enacted on a state, provincial or local level. In Ontario, Canada, the Ontarians with Disabilities Act of 2001 is meant to "improve the identification, removal and prevention of barriers faced by persons with disabilities". [25]

The European Union (EU), which has signed the United Nations' Convention on the Rights of Persons with Disabilities, also has adopted a European Disability Strategy for 2010–20. The Strategy includes the following goals, among others: [26]

A European Accessibility Act was proposed in late 2012. [27] This Act would establish standards within member countries for accessible products, services, and public buildings. The harmonization of accessibility standards within the EU "would facilitate the social integration of persons with disabilities and the elderly and their mobility across member states, thereby also fostering the free movement principle". [28]

Enforcement of the European Accessibility Act (EAA) begins in June 2025

Assistive technology and adaptive technology

The Opportunities Fair and Beyond Art Exhibition was organised in Birmingham, England, to help people with disabilities and their carers find out what services, support and opportunities are available to them. Birmingham opportunities fair.jpg
The Opportunities Fair and Beyond Art Exhibition was organised in Birmingham, England, to help people with disabilities and their carers find out what services, support and opportunities are available to them.

Assistive technology is the creation of a new device that assists a person in completing a task that would otherwise be impossible. Some examples include new computer software programs like screen readers, and inventions such as assistive listening devices, including hearing aids, and traffic lights with a standard color code that enables colorblind individuals to understand the correct signal.

Adaptive technology is the modification, or adaptation, of existing devices, methods, or the creation of new uses for existing devices, to enable a person to complete a task. [29] Examples include the use of remote controls, and the autocomplete (word completion) [30] feature in computer word processing programs, which both help individuals with mobility impairments to complete tasks. Adaptations to wheelchair tires are another example; widening the tires enables wheelchair users to move over soft surfaces, such as deep snow on ski hills, and sandy beaches.

Assistive technology and adaptive technology have a key role in developing the means for people with disabilities to live more independently, and to more fully participate in mainstream society. In order to have access to assistive or adaptive technology, however, educating the public and even legislating requirements to incorporate this technology have been necessary.

The UN CRPD, and courts in the United States, Japan, UK, and elsewhere, have decided that when it is needed to assure secret ballot, authorities should provide voters with assistive technology.

The European Court of Human Rights, on the contrary, in case Toplak v. Slovenia ruled that due to high costs, the abandonment of the assistive equipment in elections did not violate human rights.

Employment

William P. Milton Jr., deputy director of the Office of Human Resource Management, outlined the "Four Simple Steps to Hiring Qualified Candidates with Disabilities" to employees of the U.S. Department of Agriculture during a 2011 National Disability Employment Awareness Month event in Washington, D.C. Usda hiring applicants with disabilities.jpg
William P. Milton Jr., deputy director of the Office of Human Resource Management, outlined the "Four Simple Steps to Hiring Qualified Candidates with Disabilities" to employees of the U.S. Department of Agriculture during a 2011 National Disability Employment Awareness Month event in Washington, D.C.

Accessibility of employment covers a wide range of issues, from skills training, to occupational therapy, [31] finding employment, and retaining employment.

Employment rates for workers with disabilities are lower than for the general workforce. Workers in Western countries fare relatively well, having access to more services and training as well as legal protections against employment discrimination. Despite this, in the United States the 2012 unemployment rate for workers with disabilities was 12.9%, while it was 7.3% for workers without disabilities. [32] More than half of workers with disabilities (52%) earned less than $25,000 in the previous year, compared with just 38% of workers with no disabilities. This translates into an earnings gap where individuals with disabilities earn about 25 percent less of what workers without disabilities earn. Among occupations with 100,000 or more people, dishwashers had the highest disability rate (14.3%), followed by refuse and recyclable material collectors (12.7%), personal care aides (11.9%), and janitors and building cleaners (11.8%). The rates for refuse and recyclable material collectors, personal care aides, and janitors and building cleaners were not statistically different from one another. [33]

Surveys of non-Western countries are limited, but the available statistics also indicate fewer jobs being filled by workers with disabilities. In India, a large 1999 survey found that "of the 'top 100 multinational companies' in the country [...] the employment rate of persons with disabilities in the private sector was a mere 0.28%, 0.05% in multinational companies and only 0.58% in the top 100 IT companies in the country". [34] India, like much of the world, has large sections of the economy that are without strong regulation or social protections, such as the informal economy. [35] Other factors have been cited as contributing to the high unemployment rate, such as public service regulations. Although employment for workers with disabilities is higher in the public sector due to hiring programs targeting persons with disabilities, regulations currently restrict types of work available to persons with disabilities: "Disability-specific employment reservations are limited to the public sector and a large number of the reserved positions continue to be vacant despite nearly two decades of enactment of the PWD Act". [34]

Expenses related to adaptive or assistive technology required to participate in the workforce may be tax deductible expenses for individuals with a medical practitioner's prescription in some jurisdictions.

Disability management

Disability management (DM) is a specialized area of human resources that supports efforts of employers to better integrate and retain workers with disabilities. Some workplaces have policies in place to provide "reasonable accommodation" for employees with disabilities, but many do not. In some jurisdictions, employers may have legal requirements to end discrimination against persons with disabilities.

It has been noted by researchers that where accommodations are in place for employees with disabilities, these frequently apply to individuals with "pre-determined or apparent disabilities as determined by national social protection or Equality Authorities", [36] which include persons with pre-existing conditions who receive an official disability designation. One of the biggest challenges for employers is in developing policies and practises to manage employees who develop disabilities during the course of employment. Even where these exist, they tend to focus on workplace injuries, overlooking job retention challenges faced by employees who acquire a non-occupation injury or illness. Protecting employability is a factor that can help close the unemployment gap for persons with disabilities. [36]

Transportation

Providing mobility to people with disabilities includes changes for public facilities like gently sloping paths of travel for people using wheelchairs and difficulty walking up stairs, or audio announcements for the blind (either live or automated); dedicated services like paratransit; and adaptations to personal vehicles.

Adapted automobiles for persons with disabilities

A wheelchair accessible taxi with a rear ramp, Tokyo Motor Show 2009 Taxi wheelchair.jpg
A wheelchair accessible taxi with a rear ramp, Tokyo Motor Show 2009

Automobile accessibility also refers to ease of use by disabled people. Automobiles, whether a car or a van, can be adapted for a range of physical disabilities. Foot pedals can be raised, or replaced with hand-controlled devices. Wheelchair hoists, lifts or ramps may be customized according to the needs of the driver. Ergonomic adaptations, such as a lumbar support cushion, may also be needed. [37]

Generally, the more limiting the disability, the more expensive the adaptation needed for the vehicle. Financial assistance is available through some organizations, such as Motability in the United Kingdom, which requires a contribution by the prospective vehicle owner. Motability makes vehicles available for purchase or lease. [38]

When an employee with a disability requires an adapted car for work use, the employee does not have to pay for a "reasonable adjustment" in the United Kingdom; if the employer is unable to pay the cost, assistance is offered by government programs. [39]

Low floor

Wheelchair ramps allows those on wheelchairs or personal mobility devices to board low-floor public transport vehicles. Person on PMD boarding an SMRT bus, August 2022.jpg
Wheelchair ramps allows those on wheelchairs or personal mobility devices to board low-floor public transport vehicles.

A significant development in transportation, and public transport in particular, to achieve accessibility, is the move to "low-floor" vehicles. In a low-floor vehicle, access to part or all of the passenger cabin is unobstructed from one or more entrances by the presence of steps, enabling easier access for the infirm or people with push chairs. A further aspect may be that the entrance and corridors are wide enough to accommodate a wheelchair. Low-floor vehicles have been developed for buses, trolleybuses, trams and trains.

A low floor in the vehicular sense is normally combined in a conceptual meaning with normal pedestrian access from a standard kerb (curb) height. However, the accessibility of a low-floor vehicle can also be utilised from slightly raising portions of kerb at bus stops, or through use of level boarding bus rapid transit stations or tram stops. [40] The combination of access from a kerb was the technological development of the 1990s, as step-free interior layouts for buses had existed in some cases for decades, with entrance steps being introduced as chassis designs and overall height regulations changed.

Low-floor buses may also be designed with special height adjustment controls that permit a stationary bus to temporarily lower itself to ground level, permitting wheelchair access. This is referred to as a kneeling bus.

At rapid transit systems, vehicles generally have floors in the same height as the platforms but the stations are often underground or elevated, so accessibility there is not a question of providing low-floor vehicles, but providing a step-free access from street level to the platforms (generally by elevators, which may be restricted to disabled passengers only, so that the step-free access is not obstructed by non-disabled people taking advantage).[ citation needed ]

Accessibility planning for transportation in the United Kingdom

In the United Kingdom, local transport authorities are responsible for checking that all people who live within their area can access essential opportunities and services, and where gaps in provision are identified the local authorities are responsible for organizing changes to make new connections. These requirements are defined in the UK Community Planning Acts legislation [41] and more detailed guidance has been issued by the Department for Transport for each local authority. This includes the requirement to produce an Accessibility Plan under Community Planning legislation and to incorporate this within their Local Transport Plan. [42] An Accessibility Plan sets out how each local authority plans to improve access to employment, learning, health care, food shops and other services of local importance, particularly for disadvantaged groups and areas. Accessibility targets are defined in the accessibility plans, these are often the distance or time to access services by different modes of transport including walking, cycling and public transport.

Accessibility Planning was introduced as a result of the report "Making the Connections: Final Report on Transport and Social Exclusion". [43] This report was the result of research carried out by the Social Exclusion Unit. The United Kingdom also has a "code of practice" for making train and stations accessible: "Accessible Train and Station Design for Disabled People: A Code of Practice". [44] This code of practice was first published in 2002 with the objective of compliance to Section 71B of the Railways Act 1993, [45] and revised after a public consultation period in 2008.

Some transport companies have since improved the accessibility of their services, such as incorporating low-floor buses into their stock as standard.[ citation needed ] In August 2021, South Western Railway announced the streamlining of their accessibility services, allowing passengers requiring assistance to inform the company with as little as 10 minutes' notice at all 189 stations on its network, replacing an older scheme wherein assisted journeys had to be booked six hours to a day in advance. The system will utilise clear signage at stations and QR codes, allowing customers to send details of the assistance they require and their planned journey to staff remotely. [46]

Making public services fully accessible to the public has led to some technological innovations. Public announcement systems using audio induction loop technology can broadcast announcements directly into the hearing aid of anyone with a hearing impairment, making them useful in such public places as auditoriums and train stations.

Public space

The UN Convention on the Rights of Persons with Disabilities (2006) requires ‘appropriate measures’ to ensure people with disabilities are able to ‘access, on an equal basis with others','the physical environment’, ‘transportation’ and ‘other facilities and services open or provided to the public’’. This requirement also applies to ‘roads’ and ‘transportation’ as well as ‘buildings, and other indoor and outdoor facilities’. [47]

At the same time, promotion of active travel, or 'shared space' initiatives to pedestrianise city centres can introduce unintended barriers, especially for pedestrians who are visually impaired and who can find these environments confusing or even dangerous. [48] It is important to have effective mechanisms to ensure that urban spaces are designed to be inclusive of pedestrians with disabilities. These can include early consultation with disabled persons or their representative organisations, and appropriate regulation of city planning. [48]

Housing

Accessibly designed modification for a high-step entrance -118wiki.jpg
Accessibly designed modification for a high-step entrance

Most existing and new housing, even in the wealthiest nations, lack basic accessibility features unless the designated, immediate occupant of a home currently has a disability. However, there are some initiatives to change typical residential practices so that new homes incorporate basic access features such as zero-step entries and door widths adequate for wheelchairs to pass through. Occupational Therapists are a professional group skilled in the assessment and making of recommendations to improve access to homes. [49] They are involved in both the adaptation of existing housing to improve accessibility, [50] and in the design of future housing. [51]

The broad concept of Universal design is relevant to housing, as it is to all aspects of the built environment. Furthermore, a Visitability movement [52] begun by grass roots disability advocates in the 1980s focuses specifically on changing construction practices in new housing. This movement, a network of interested people working in their locales, works on educating, passing laws, and spurring voluntary home access initiatives with the intention that basic access become a routine part of new home construction.

Accessibility and "ageing in place"

Accessibility in the design of housing and household devices has become more prominent in recent decades due to a rapidly ageing population in developed countries. [53] Ageing seniors may wish to continue living independently, but the ageing process naturally increases the disabilities that a senior citizen will experience. A growing trend is the desire for many senior citizens to 'age in place', living as independently as possible for as long as possible. Accessibility modifications that allow ageing in place are becoming more common. Housing may even be designed to incorporate accessibility modifications that can be made throughout the life cycle of the residents.

The English Housing Survey for 2018/19 found only 9% of homes in England have key features, such as a toilet at entrance level and sufficiently wide doorways, to deem them accessible. This was an improvement from 5% in 2005. More than 400,000 wheelchair users in England were living in homes which are neither adapted nor accessible. [54]

Voting

Under the Convention on the Rights of Persons with Disabilities, states parties are bound to assure accessible elections, voting, and voting procedures. In 2018, the United Nations Committee on the Rights of Persons with Disabilities issued an opinion that all polling stations should be fully accessible. At the European Court of Human Rights, there are currently two ongoing cases about the accessibility of polling places and voting procedures. They were brought against Slovenia by two voters and the Slovenian Disability Rights Association. [55] As of January 2020, the case, called Toplak and Mrak v. Slovenia, was ongoing. [56] The aim of the court procedure is to make accessible all polling places in Europe. [57]

Disability, information technology (IT) and telecommunications

Advances in information technology and telecommunications have represented a leap forward for accessibility. Access to the technology is restricted to those who can afford it, but it has become more widespread in Western countries in recent years. For those who use it, it provides the ability to access information and services by minimizing the barriers of distance and cost as well as the accessibility and usability of the interface. In many countries this has led to initiatives, laws and/or regulations that aim toward providing universal access to the internet and to phone systems at reasonable cost to citizens. [58]

A major advantage of advanced technology is its flexibility. Some technologies can be used at home, in the workplace, and in school, expanding the ability of the user to participate in various spheres of daily life. Augmentative and alternative communication technology is one such area of IT progress. It includes inventions such as speech-generating devices, teletypewriter devices, adaptive pointing devices to replace computer mouse devices, and many others. Mobile telecommunications devices and computer applications are also equipped with accessibility features. [59] [60] [61] They can be adapted to create accessibility to a range of tasks, and may be suitable for different kinds of disability.

The following impairments are some of the disabilities that affect communications and technology access, as well as many other life activities:

Each kind of disability requires a different kind of accommodation, and this may require analysis by a medical specialist, an educational specialist or a job analysis when the impairment requires accommodation.

Examples of common assistive technologies

ImpairmentAssistive technology
Communication impairment Blissymbols board or similar device; electronic speech synthesizer
Hearing impairment hearing aids, earphones, headphones, headsets; real-time closed captioning; teletypewriter; sign language avatars
Mobility impairmentPage-turning device; adaptive keyboards and computer mice (pointing devices such as trackballs, vertical mouse, foot mouse, or programmable pedal)
Physical or mental impairment, learning disability Voice recognition software, refreshable braille display, screen reader
Perceptual disability, learning disability Talking textbooks, virtual keyboard
Visual impairment, learning disabilityModified monitor interface, magnification devices; reading service, e-text
Visual impairment, learning disability Braille note-taker; Braille printer; screen magnifiers; optical scanner
Visual impairment Screen readers; notable examples include NonVisual Desktop Access (NVDA), VoiceOver, and Check Meister Screen Reader. Check Meister also offers a screen reader for Mac OS and Windows, available here: [Check Meister Browser](https://www.checkmeister.com/browser).

Mobility impairments

One of the first areas where information technology improved the quality of life for disabled individuals is the voice operated wheelchair. Quadriplegics have the most profound disability, and the voice operated wheelchair technology was first developed in 1977 to provide increased mobility. The original version replaced the joystick system with a module that recognized 8 commands. Many other technology accommodation improvements have evolved from this initial development. [66]

Missing arms or fingers may make the use of a keyboard and mouse difficult or impossible. Technological improvements such as speech recognition devices and software can improve access.

Communication (including speech) impairments

A communication disorder interferes with the ability to produce clearly understandable speech. There can be many different causes, such as nerve degeneration, muscle degeneration, stroke, and vocal cord injury. The modern method to deal with speaking disabilities has been to provide a text interface for a speech synthesizer for complete vocal disability. This can be a great improvement for people that have been limited to the use of a throat vibrator to produce speech since the 1960s.

Hearing impairment

An individual satisfies the definition of hearing disabled when hearing loss is about 30 dB for a single frequency, but this is not always perceptible as a disability. [67] For example, loss of sensitivity in one ear interferes with sound localization (directional hearing), which can interfere with communication in a crowd. This is often recognized when certain words are confused during normal conversation. This can interfere with voice-only interfaces, like automated customer service telephone systems, because it is sometimes difficult to increase the volume and repeat the message.

Mild to moderate hearing loss may be accommodated with a hearing aid that amplifies ambient sounds. Portable devices with speed recognition that can produce text can reduce problems associated with understanding conversation. This kind of hearing loss is relatively common, and this often grows worse with age.

The modern method to deal with profound hearing disability is the Internet using email or word processing applications. The telecommunications device for the deaf (TDD) became available in the form of the teletype (TTY) during the 1960s. These devices consist of a keyboard, display and modem that connects two or more of these devices using a dedicated wire or plain old telephone service.

Modern computer animation allows for sign language avatars to be integrated into public areas. This technology could potentially make train station announcements, news broadcasts, etc. accessible when a human interpreter is not available. [68] [69] Sign language can also be incorporated into film; for example, all movies shown in Brazilian movie theaters must have a Brazilian Sign Language video track available to play alongside the film via a second screen. [70] [71]

Visual impairments

A wide array of technology products is available to assist with visual impairment. These include screen magnification for monitors, screen-reading software for computers and mobile devices, mouse-over speech synthesis for browsing, braille displays, braille printers, braille cameras, and voice-activated phones and tablets.

One emerging product that will make ordinary computer displays available for the blind is the refreshable tactile display, which is very different from a conventional braille display. This provides a raised surface corresponding to the bright and dim spots on a conventional display. An example is the Touch Sight Camera for the Blind.

Speech Synthesis Markup Language [72] and Speech Recognition Grammar Specification [73] ) are relatively recent technologies intended to standardize communication interfaces using Augmented BNF Form and XML Form. These technologies assist visual impairments and physical impairment by providing interactive access to web content without the need to visually observe the content. While these technologies provides access for visually impaired individuals, the primary benefactor has been automated systems that replace live human customer service representatives that handle telephone calls.

Web accessibility

International standards and guidelines

There have been a few major movements to coordinate a set of guidelines for accessibility for the web. The first and most well known is The Web Accessibility Initiative (WAI), which is part of the World Wide Web Consortium (W3C). This organization developed the Web Content Accessibility Guidelines (WCAG) 1.0 and 2.0 which explain how to make Web content accessible to everyone, including people with disabilities. Web "content" generally refers to the information in a Web page or Web application, including text, images, forms, and sounds. (More specific definitions are available in the WCAG documents.) [74]

The WCAG is separated into three levels of compliance, A, AA and AAA. Each level requires a stricter set of conformance guidelines, such as different versions of HTML (Transitional vs Strict) and other techniques that need to be incorporated into coding before accomplishing validation. Online tools allow users to submit their website and automatically run it through the WCAG guidelines and produce a report, stating whether or not they conform to each level of compliance. Adobe Dreamweaver also offers plugins which allow web developers to test these guidelines on their work from within the program.

The ISO/IEC JTC1 SC36 WG7 24751 Individualized Adaptability and Accessibility in e-learning, education and training series is freely available and made of 3 parts: Individualized Adaptability and Accessibility in e-learning, education and training, Standards inventory and Guidance on user needs mapping.

Another source of web accessibility guidance comes from the US government. In response to Section 508 of the US Rehabilitation Act, the Access Board developed standards to which U.S. federal agencies must comply in order to make their sites accessible. The U.S. General Services Administration has developed a website where one can take online training courses for free to learn about these rules. [75]

Web accessibility features

Examples of accessibility features include:

  • WAI-AA compliance with the WAI's WCAG
  • Semantic Web markup
  • (X)HTML Validation from the W3C for the page's content
  • CSS Validation from the W3C for the page's layout
  • Compliance with all guidelines from Section 508 of the US Rehabilitation Act
  • A high contrast version of the site for individuals with low vision, and a low contrast (yellow or blue) version of the site for individuals with dyslexia
  • Alternative media for any multimedia used on the site (video, flash, audio, etc.)
  • Simple and consistent navigation
  • Device independent
  • Reducing Cognitive load for decision making

While WCAG provides much technical information for use by web designers, coders and editors, BS 8878:2010 Web accessibility – Code of Practice [76] has been introduced, initially in the UK, to help site owners and product managers to understand the importance of accessibility. It includes advice on the business case behind accessibility, and how organisations might usefully update their policies and production processes to embed accessibility in their business-as-usual. On 28 May 2019, BS 8878 was superseded by ISO 30071-1, [77] the international Standard that built on BS 8878 and expanded it for international use.

Another useful idea is for websites to include a web accessibility statement on the site. Initially introduced in PAS 78, [78] the best practice for web accessibility statements has been updated in BS 8878 [79] to emphasise the inclusion of: information on how disabled and elderly people could get a better experience of using the website by using assistive technologies or accessibility settings of browsers and operating systems (linking to "BBC My Web My Way" [80] can be useful here); information on what accessibility features the site's creators have included, and if there are any user needs which the site does not currently support (for example, descriptive video to allow blind people to access the information in videos more easily); and contact details for disabled people to be able to use to let the site creators know if they have any problems in using the site. While validations against WCAG, and other accessibility badges can also be included, they should be put lower down the statement, as most disabled people still do not understand these technical terms. [81]

Education and accessibility for students

A teacher helps her student in an orphanage in central Vietnam. The orphanage caters to many abandoned and disabled children who, through education and communication programs, are able to have a life that would otherwise not be possible. Vietnam phusical therapy school orphanage.jpg
A teacher helps her student in an orphanage in central Vietnam. The orphanage caters to many abandoned and disabled children who, through education and communication programs, are able to have a life that would otherwise not be possible.
Construction of a ramp for a school latrine in Ukunda, Kenya, to make the school building more accessible to students with disabilities Latrine ramp school.jpg
Construction of a ramp for a school latrine in Ukunda, Kenya, to make the school building more accessible to students with disabilities

Equal access to education for students with disabilities is supported in some countries by legislation. It is still challenging for some students with disabilities to fully participate in mainstream education settings, but many adaptive technologies and assistive programs are making improvements. In India, the Medical Council of India has now passed the directives to all the medical institutions to make them accessible to persons with disabilities. This happened due to a petition by Satendra Singh founder of Infinite Ability. [82]

Students with a physical or mental impairment or learning disability may require note-taking assistance, which may be provided by a business offering such services, as with tutoring services. Talking books in the form of talking textbooks are available in Canadian secondary and post-secondary schools. Also, students may require adaptive technology to access computers and the Internet. These may be tax-exempt expenses in some jurisdictions with a medical prescription.

Accessibility of assessments

It is important to ensure that the accessibility in education includes assessments. [83] Accessibility in testing or assessments entails the extent to which a test and its constituent item set eliminates barriers and permits the test-taker to demonstrate their knowledge of the tested content. [84]

With the passage of the No Child Left Behind Act of 2001 in the United States, [85] student accountability in essential content areas such as reading, mathematics, and science has become a major area of focus in educational reform. [86] As a result, test developers have needed to create tests to ensure all students, including those with special needs (e.g., students identified with disabilities), are given the opportunity to demonstrate the extent to which they have mastered the content measured on state assessments. Currently, states are permitted to develop two different types of tests in addition to the standard grade-level assessments to target students with special needs. First, the alternate assessment may be used to report proficiency for up to 1% of students in a state. Second, new regulations permit the use of alternate assessments based on modified academic achievement standards to report proficiency for up to 2% of students in a state.

To ensure that these new tests generate results that allow valid inferences to be made about student performance, they must be accessible to as many people as possible. The Test Accessibility and Modification Inventory (TAMI) [87] and its companion evaluation tool, the Accessibility Rating Matrix (ARM), were designed to facilitate the evaluation of tests and test items with a focus on enhancing their accessibility. Both instruments incorporate the principles of accessibility theory and were guided by research on universal design, assessment accessibility, cognitive load theory, and research on item writing and test development. The TAMI is a non-commercial instrument that has been made available to all state assessment directors and testing companies. Assessment researchers have used the ARM to conduct accessibility reviews of state assessment items for several state departments of education.

See also

Related Research Articles

<span class="mw-page-title-main">Assistive technology</span> Assistive devices for people with disabilities

Assistive technology (AT) is a term for assistive, adaptive, and rehabilitative devices for people with disabilities and the elderly. Disabled people often have difficulty performing activities of daily living (ADLs) independently, or even with assistance. ADLs are self-care activities that include toileting, mobility (ambulation), eating, bathing, dressing, grooming, and personal device care. Assistive technology can ameliorate the effects of disabilities that limit the ability to perform ADLs. Assistive technology promotes greater independence by enabling people to perform tasks they were formerly unable to accomplish, or had great difficulty accomplishing, by providing enhancements to, or changing methods of interacting with, the technology needed to accomplish such tasks. For example, wheelchairs provide independent mobility for those who cannot walk, while assistive eating devices can enable people who cannot feed themselves to do so. Due to assistive technology, disabled people have an opportunity of a more positive and easygoing lifestyle, with an increase in "social participation", "security and control", and a greater chance to "reduce institutional costs without significantly increasing household expenses." In schools, assistive technology can be critical in allowing students with disabilities to access the general education curriculum. Students who experience challenges writing or keyboarding, for example, can use voice recognition software instead. Assistive technologies assist people who are recovering from strokes and people who have sustained injuries that affect their daily tasks.

<span class="mw-page-title-main">Americans with Disabilities Act of 1990</span> 1990 U.S. civil rights law

The Americans with Disabilities Act of 1990 or ADA is a civil rights law that prohibits discrimination based on disability. It affords similar protections against discrimination to Americans with disabilities as the Civil Rights Act of 1964, which made discrimination based on race, religion, sex, national origin, and other characteristics illegal, and later sexual orientation and gender identity. In addition, unlike the Civil Rights Act, the ADA also requires covered employers to provide reasonable accommodations to employees with disabilities, and imposes accessibility requirements on public accommodations.

<span class="mw-page-title-main">Section 508 Amendment to the Rehabilitation Act of 1973</span> Amendment to United States federal law

In 1998, the U.S. Congress amended the Rehabilitation Act to require federal agencies to make their electronic and information technology accessible to people with disabilities. Section 508 was enacted to eliminate barriers in information technology, to make available new opportunities for people with disabilities and to encourage the development of technologies that will help achieve these goals. The law applies to all federal agencies when they develop, procure, maintain, or use electronic and information technology. Under Section 508, agencies must give employees with disabilities and members of the public access to information that is comparable to the access available to others.

Disability is the experience of any condition that makes it more difficult for a person to do certain activities or have equitable access within a given society. Disabilities may be cognitive, developmental, intellectual, mental, physical, sensory, or a combination of multiple factors. Disabilities can be present from birth or can be acquired during a person's lifetime. Historically, disabilities have only been recognized based on a narrow set of criteria—however, disabilities are not binary and can be present in unique characteristics depending on the individual. A disability may be readily visible, or invisible in nature.

Computer accessibility refers to the accessibility of a computer system to all people, regardless of disability type or severity of impairment. The term accessibility is most often used in reference to specialized hardware or software, or a combination of both, designed to enable the use of a computer by a person with a disability or impairment.

<span class="mw-page-title-main">Social model of disability</span> Societal failure to adapt to disabilities

The social model of disability identifies systemic barriers, derogatory attitudes, and social exclusion, which make it difficult or impossible for disabled people to attain their valued functionings. The social model of disability diverges from the dominant medical model of disability, which is a functional analysis of the body as a machine to be fixed in order to conform with normative values. The medical model of disability carries with it a negative connotation, with negative labels associated with disabled people. The social model of disability seeks to challenge power imbalances within society between differently-abled people and seeks to redefine what disability means as a diverse expression of human life. While physical, sensory, intellectual, or psychological variations may result in individual functional differences, these do not necessarily have to lead to disability unless society fails to take account of and include people intentionally with respect to their individual needs. The origin of the approach can be traced to the 1960s, and the specific term emerged from the United Kingdom in the 1980s.

<span class="mw-page-title-main">Universal design</span> Design philosophy associated with accessibility and usability for everyone

Universal design is the design of buildings, products or environments to make them accessible to people, regardless of age, disability, or other factors. It emerged as a rights-based, anti-discrimination measure, which seeks to create design for all abilities. Evaluating material and structures that can be utilized by all. It addresses common barriers to participation by creating things that can be used by the maximum number of people possible. When disabling mechanisms are to be replaced with mechanisms for inclusion, different kinds of knowledge are relevant for different purposes. As a practical strategy for inclusion, Universal Design involves dilemmas and often difficult priorities.” Curb cuts or sidewalk ramps, which are essential for people in wheelchairs but also used by all, are a common example of universal design.

Web accessibility, or eAccessibility, is the inclusive practice of ensuring there are no barriers that prevent interaction with, or access to, websites on the World Wide Web by people with physical disabilities, situational disabilities, and socio-economic restrictions on bandwidth and speed. When sites are correctly designed, developed and edited, more users have equal access to information and functionality.

Service and supports for people with disabilities are those government or other institutional services and supports specifically provided to enable people who have disabilities to participate in society and community life. Some such services and supports are mandated or required by law, some are assisted by technologies that have made it easier to provide the service or support while others are commercially available not only to persons with disabilities, but to everyone who might make use of them.

<span class="mw-page-title-main">Inclusive recreation</span> Recreational activities accessible to disabled people

Inclusive recreation, also known as adaptive or accessible recreation, is a concept whereby people with disabilities are given the opportunity to participate in recreational activities. Through the use of activity modifications and assistive technology, athletes or participants in sports or other recreational pursuits are able to play alongside their non-disabled peers. The Boy Scouts of America, for example, has about 100,000 physically or mentally disabled members throughout the United States.

PAS 78: Guide to good practice in commissioning accessible websites is a Publicly Available Specification published on March 8, 2006 by the British Standards Institution in collaboration with the Disability Rights Commission. It provides guidance to organisations in how to go about commissioning an accessible website from a design agency. It describes what is expected from websites to comply with the UK Disability Discrimination Act 1995, making websites accessible to disabled people.

Rehabilitation engineering is the systematic application of engineering sciences to design, develop, adapt, test, evaluate, apply, and distribute technological solutions to problems confronted by individuals with disabilities. These individuals may have experienced a spinal cord injury, brain trauma, or any other debilitating injury or disease. Functional areas addressed through rehabilitation engineering may include mobility, communications, hearing, vision, and cognition, and activities associated with employment, independent living, education, and integration into the community.

In 2003 and following years, initiatives were instituted to improve internet access for people with disabilities in the Philippines. These measures were inspired by the UNESCAP "Asia-Pacific Decade for Disabled Persons" (1993–2002). Key organizations included the government body National Council for the Welfare of Disabled Persons (Philippines) and the private sector body Philippine Web Accessibility Group (PWAG). The "Disabled Friendly Website Awards" were launched to encourage web designers to incorporate universal access. Since 2009 unhampered access to Information and Communications Technology (ICT) has been in the second National Human Rights Action Plan of the Philippine government.

<span class="mw-page-title-main">Inclusion (disability rights)</span> The fair incorporation of persons with disabilities in society

Inclusion, in relation to persons with disabilities, is defined as including individuals with disabilities in everyday activities and ensuring they have access to resources and opportunities in ways that are similar to their non-disabled peers. Disability rights advocates define true inclusion as results-oriented, rather than focused merely on encouragement. To this end, communities, businesses, and other groups and organizations are considered inclusive if people with disabilities do not face barriers to participation and have equal access to opportunities and resources.

<span class="mw-page-title-main">Wheelchair</span> Chair with wheels used by people with mobility deficiencies

A wheelchair is a mobilized form of chair using 2 or more wheels, a footrest, and an armrest usually cushioned. It is used when walking is difficult or impossible to do due to illnesses, injury, disabilities, or age-related health conditions. Wheelchairs provide mobility, postural support, and freedom to those who cannot walk or have difficulty walking, enabling them to move around, participate in everyday activities, and live life on their own terms. []

Design for All in the context of information and communications technology (ICT) is the conscious and systematic effort to proactively apply principles, methods and tools to promote universal design in computer-related technologies, including Internet-based technologies, thus avoiding the need for a posteriori adaptations, or specialised design.

<span class="mw-page-title-main">Assistive technology in sport</span>

Assistive technology in sport is an area of technology design that is growing. Assistive technology is the array of new devices created to enable sports enthusiasts who have disabilities to play. Assistive technology may be used in disabled sports, where an existing sport is modified to enable players with a disability to participate; or, assistive technology may be used to invent completely new sports with athletes with disabilities exclusively in mind.

Disability in the United Kingdom covers a wide range of conditions and experiences, deeply impacting the lives of millions of people. Defined by the Equality Act 2010 as a physical or mental impairment with a substantial and long-term adverse effect on a person's ability to carry out normal day-to-day activities, it encompasses various aspects of life, including demographics, legislation, healthcare, employment, and culture. Despite numerous advancements in policy and social attitudes, individuals with disabilities often encounter unique challenges and disparities.

Accessibility apps are mobile apps that increase the accessibility of a device or technology for individuals with disabilities. Applications, also known as, application software, are programs that are designed for end users to be able to perform specific tasks. There are many different types of apps, some examples include, word processors, web browsers, media players, console games, photo editors, accounting applications and flight simulators. Accessibility generally refers to the design of products and environments to be usable by people with disabilities. Accessibility apps can also include making a current version of software or hardware more accessible by adding features. Accessibility apps aim to reduce barriers to technological goods and services, making them more usable for various groups within society. A basic example is that a person who experiences vision impairments is able to access technology through enabling voice recognition and text-to-speech software.

As of 2007, there are almost one million people with various levels of physical and mental disabilities in Taiwan. Taiwan adopted a universal healthcare system in 1995 to properly support patient care and provide more transparent access to its people, including those who identify as disabled. Taiwan is a nation that has grown tremendously to support those that are disabled. This includes having a socialized form of medical care that is run by the Executive Yuan. Overall this universal scheme includes the law, public facilities, and educational aspect of healthcare. Taiwan also has different aspects of healthcare to effectively support those that are disadvantaged or disabled, this included subsidies, loans, plans, service guarantee and specific care for medically vulnerable populations. Taiwan's healthcare development and dedication to support its people plays an important role in its transformation of benefits for disabled people.

References

  1. Henry, Shawn Lawton; Abou-Zahra, Shadi; Brewer, Judy (2014). The Role of Accessibility in a Universal Web. Proceeding W4A '14 Proceedings of the 11th Web for All Conference Article No. 17. ISBN   978-1-4503-2651-3 . Retrieved 2014-12-17.
  2. "What is assistive technology?". washington.edu. Archived from the original on 2019-01-19. Retrieved 2018-07-02.
  3. "Federal Communications Commission". FCC on Telecommunications Accessibility for the Disabled. 1999.
  4. Goldberg, L. (1996). "Electronic Curbcuts: Equitable Access to the Future". Getty Center for the History of Art and the Humanities and the Getty Art History Information Program, Cyberspace/Public Space: The Role of Arts and Culture in Defining a Virtual Public Sphere. Archived from the original on April 27, 1999.
  5. Jacobs, S. (1999). "Section 255 of the Telecommunications Act of 1996: Fueling the Creation of New Electronic Curbcuts".
  6. Valdes, L. (2003). "Accessibility on the Internet".
  7. Brewer, J. "Access to the World Wide Web: Technical and Policy Aspects". In Preiser, W.; Ostroff, E. (eds.). Universal Design Handbook (1st ed.). New York: MacGraw-Hill.
  8. "Accessibility, Usability, and Inclusion". Web Accessibility Initiative. Retrieved 2020-07-05.
  9. "The Concept of Universal Design". udeworld.com. Archived from the original on 2018-07-04. Retrieved 2018-07-02.{{cite web}}: CS1 maint: unfit URL (link)
  10. Lisney, Eleanor; Bowen, Jonathan P.; Hearn, Kirsten; Zedda, Maria (2013). "Museums and Technology: Being Inclusive Helps Accessibility for All". Curator: The Museum Journal. 56 (3): 353. doi:10.1111/cura.12034.
  11. Norberto Rocha, Jessica; Massarani, Luisa; de Abreu, Willian; Inacio, Gustavo; Molenzani, Aline (2020). "Investigating accessibility in Latin American science museums and centers". Annals of the Brazilian Academy of Sciences. 92 (1): e20191156. doi: 10.1590/0001-3765202020191156 . PMID   32321029.
  12. "Convention on the Rights of Persons with Disabilities (CRPD) | United Nations Enable". un.org. 14 May 2015. Retrieved 2018-07-02.
  13. "Accessibility Tools: When is a facility considered accessible?". fs.fed.us. Retrieved 2018-07-02.
  14. "Section508.gov | GSA Government-wide IT Accessibility Program". section508.gov. Retrieved 2018-07-02.
  15. "An Overview of the Americans With Disabilities Act | ADA National Network". adata.org. Retrieved 2018-07-02.
  16. "Home – United States Access Board". access-board.gov. Retrieved 2018-07-02.
  17. "JAN – Job Accommodation Network". askjan.org. Retrieved 2018-07-02.
  18. AG (July 2016). "Disability Discrimination Act 1992". legislation.gov.au. Retrieved 2018-07-02.
  19. "South Africa. Promotion of Equality and Prevention of Unfair Discrimination Act, 2000". ilo.org. Retrieved 2018-07-02.
  20. "Equality Act 2010: guidance". GOV.UK. Retrieved 2018-07-02.
  21. Ockersz, Lynn (8 November 2009). "Landmark Supreme Court ruling – A fillip for accessibility rights of disabled". Upali Newspapers – The Sunday Island. p. 17. Retrieved 2010-01-26.
  22. "Ikke tilgjengelig:Lov om forbud mot diskriminering på grunn av nedsatt funksjonsevne (diskriminerings- og tilgjengelighetsloven) – Lovdata". lovdata.no.
  23. "Lei Brasileira de Inclusão da Pessoa com Deficiência (Estatuto da Pessoa com Deficiência)". planalto.gov.br.
  24. "Canada's first federal accessibility legislation receives Royal Assent". Employment and Social Development Canada. 21 June 2019. Retrieved 18 September 2019.
  25. "About the AODA – Accessibility Ontario". accessontario.com. Retrieved 2018-07-02.
  26. "EU disability strategy 2010–20: access and rights". European Commission. Retrieved November 12, 2012.
  27. "European Accessibility Act: legislative initiative to improve accessibility of goods and services in the Internal Market" (PDF). European Commission. September 2012. Retrieved 13 June 2014.
  28. "European Accessibility Act proposed for 2012". Eurocities . Retrieved November 12, 2012.
  29. "What is Adaptive Technology? // ACT Center". actcenter.missouri.edu. Retrieved 2018-07-02.
  30. "HTML input autocomplete Attribute". w3schools.com. Retrieved 2018-07-02.
  31. "What is Occupational Therapy?". aota.org. Retrieved 2018-07-02.
  32. "Disability Employment Resources by Topic". U.S. Department of Labor – Office of Disability Employment Policy. Retrieved November 30, 2012.
  33. "Workers with a Disability Less Likely to be Employed, More Likely to Hold Jobs with Lower Earnings, Census Bureau Reports". United States Census Bureau Newsroom. Retrieved 30 April 2014.
  34. 1 2 Kumar, Arun; Sonpal, Deepa; Hiranandani, Vanmala (2012). "Trapped Between Ableism And Neoliberalism: Critical Reflections On Disability And Employment In India". Disability Studies Quarterly. 32 (3): N.p. doi: 10.18061/dsq.v32i3.3235 . Retrieved November 30, 2012.
  35. "Nearly two-thirds of global workforce in the 'informal' economy – UN study". UN News. 2018-04-30. Retrieved 2018-07-02.
  36. 1 2 Geisen, Thomas; Henry George Harder (2011). Disability Management and Workplace Integration: International Research Findings. Gower Publishing. p. 165. ISBN   9781409418887.
  37. Dimond, Bridget C. (2009). Legal Aspects of Physiotherapy. John Wiley & Sons. pp.  263. ISBN   9781405176156.
  38. Dimond, Bridget C. (2011). Legal Aspects of Occupational Therapy. John Wiley & Sons. pp. n.p. ISBN   9781444348163.
  39. Disability Discrimination Act 1995: Code of Practice; Employment and Occupation. Disability Rights Commission. 2004. p. 5. ISBN   9780117034198.
  40. "What is BRT? – Institute for Transportation and Development Policy". Institute for Transportation and Development Policy. Retrieved 2018-07-02.
  41. "Community planning in the devolved UK". The Knowledge Exchange Blog. 2017-01-25. Retrieved 2018-07-02.
  42. "Local Transport Plan | PLYMOUTH.GOV.UK". plymouth.gov.uk. Archived from the original on 2018-07-02. Retrieved 2018-07-02.
  43. Office of the Deputy Prime Minister – Social Exclusion Unit: "Making the Connections: Final Report on Transport and Social Exclusion Archived 2010-09-07 at the UK Government Web Archive ". February 2003.
  44. Department of Transport & Transport Scotland: "Accessible Train and Station Design for Disabled People: A Code of Practice". July 2008.
  45. "Railways Act 1993". legislation.gov.uk. Expert Participation. Retrieved 2018-07-02.{{cite web}}: CS1 maint: others (link)
  46. Topham, Gwyn (5 August 2021). "South Western Railway launches 10 minutes' notice assistance scheme". The Guardian . Archived from the original on 5 August 2021. Retrieved 5 August 2021.
  47. "Convention on the Rights of Persons with Disabilities". Office of the High Commissioner for Human Rights (OHCHR). 12 December 2006. Retrieved 30 October 2024.
  48. 1 2 Lawson, Anna; Eskytė, Ieva; Orchard, Maria; Houtzager, Dick; De Vos, Edwin Luitzen (2022-06-26). "Pedestrians with Disabilities and Town and City Streets: From Shared to Inclusive Space?". The Journal of Public Space. 7 (2): 41–62. doi:10.32891/jps.v7i2.1603. ISSN   2206-9658.
  49. Occupational therapy research on assistive technology and physical environmental issues: A literature review, Fange et al. (2006), Canadian Journal of Occupational Therapy
  50. Changes in accessibility and usability in housing: an exploration of the housing adaptation process (2005), Fange and Iwarsson, Occupational Therapy International
  51. Accessibility and usability in housing: construct validity and implications for research and practice (2003), Fange and Iwarsson, Disability and Rehabilitation
  52. "Visitability | WBDG Whole Building Design Guide". wbdg.org. Retrieved 2018-07-02.
  53. "Accessible Home Design: Information & Ideas". Disabled World. Retrieved 2018-07-02.
  54. "Government data reveals 'accessible homes crisis' for disabled people". Home Care Insight. 13 July 2020. Retrieved 30 August 2020.
  55. "STA: Disabled take Slovenia to Human Rights Court over polling stations accessibility". english.sta.si. Retrieved 2020-01-14.
  56. "HUDOC – European Court of Human Rights". hudoc.echr.coe.int. Retrieved 2020-01-14.
  57. "Top European Court to Rule on Making All Polling Stations Accessible in Europe". Wheelchair Accessible Lifestyle. 2020-03-10. Retrieved 2020-03-15.
  58. "Better Web Browsing: Tips for Customizing Your Computer". World Wide Web Consortium.
  59. "Accessibility". Apple. Retrieved 2020-08-31.
  60. "Android accessibility overview – Android Accessibility Help". support.google.com. Retrieved 2020-08-31.
  61. "Accessibility Technology & Tools". Accessibility. Retrieved 2020-08-31.
  62. "Speech and Communication Disorders". National Institutes of Health.
  63. "Hearing Disorders and Deafness". National Library of Medicine.
  64. "Visual Impairment and Blindness". National Library of Medicine.
  65. Forssman, S (1955). "Pre-employment and periodical health examinations, job analysis and placement of workers". Bulletin of the World Health Organization. 13 (4): 495–503. PMC   2538128 . PMID   13276805.
  66. Clark, J. A.; Roemer, R. B. (April 1977). "Voice Operated Wheelchair". Arch Phys Med Rehabil. 58 (4): 169–75. PMID   849131.
  67. "Definition of hearing loss – Mild, Moderate, Severe & Profound - hear-it.org" . Retrieved 2018-07-02.
  68. Kipp, Michael; Nguyen, Quan; Heloir, Alexis; Matthes, Silke (October 2011). "The proceedings of the 13th international ACM SIGACCESS conference on Computers and accessibility – ASSETS '11". Proceedings of the 13th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS-11). 13th ACM Sigaccess Conference on Computers and Accessibility. Dundee, Scotland: Association for Computing Machinery. pp. 107–114. doi:10.1145/2049536.2049557. ISBN   9781450309202.
  69. World Federation of the Deaf; World Association of Sign Language Interpreters (14 March 2018). WFD and WASLI Statement on Use of Signing Avatars (Report). p. 2. Retrieved 22 September 2020.
  70. "Deluxe Launches First Brazilian Sign Language (LIBRAS) Localization Service Outside Brazil". Cision PR Newswire. Deluxe Entertainment Services Group Inc. through Cision PR Newswire. 18 Sep 2017. Retrieved 14 Nov 2023.
  71. "Accessibility & The Audio Track File". Cinepedia. Retrieved 14 November 2023.
  72. "Speech Synthesis Markup Language (SSML) Version 1.0". w3.org.
  73. "Speech Recognition Grammar Specification Version 1.0". w3.org.
  74. "WAI Resources on Introducing Web Accessibility". Web Accessibility Initiative . W3C . Retrieved 18 June 2014.
  75. Section 508: 508 Training.
  76. BS 8878:2010 Web accessibility – Code of Practice.
  77. ISO 30071-1.
  78. PAS 78 Archived 2015-07-03 at the Wayback Machine .
  79. BS 8878.
  80. BBC My Web My Way, BBC, UK.
  81. Example of an accessibility statement written by the lead-author of BS 8878.
  82. "MCI asks all medical institutions to be 'accessible'". The Hindu. 18 April 2013. Retrieved 21 April 2013.
  83. "Making assessments accessible". Jisc. Retrieved 2020-08-17. Accessibility must be considered from the outset when designing assessments, otherwise disabled learners could be unintentionally disadvantaged.
  84. Roelofs, Erik (2019), Veldkamp, Bernard P.; Sluijter, Cor (eds.), "A Framework for Improving the Accessibility of Assessment Tasks", Theoretical and Practical Advances in Computer-based Educational Measurement, Methodology of Educational Measurement and Assessment, Cham: Springer International Publishing, pp. 21–45, doi: 10.1007/978-3-030-18480-3_2 , ISBN   978-3-030-18480-3
  85. Klein, Alyson. "No Child Left Behind Overview: Definitions, Requirements, Criticisms, and More". Education Week. Bethesda MD: Editorial Projects in Education. ISSN   0277-4232. OCLC   07579948. Archived from the original on 2022-08-26. Retrieved 2018-07-02.
  86. "Executive Summary of the No Child Left Behind Act of 2001". www2.ed.gov. 2007-11-20. Retrieved 2018-07-02.
  87. "Peabody College of Education and Human Development | Vanderbilt University". Peabody.vanderbilt.edu. 2012-07-30. Archived from the original on 2011-09-27. Retrieved 2012-08-13.