Air-supported structure

Last updated
Air-supported dome used as a sports and recreation venue Air-supported dome.jpg
Air-supported dome used as a sports and recreation venue

An air-supported (or air-inflated) structure is any building that derives its structural integrity from the use of internal pressurized air to inflate a pliable material (i.e. structural fabric) envelope, so that air is the main support of the structure, and where access is via airlocks.

Contents

The first air-supported structure built in history was the radome manufactured at the Cornell Aeronautical Laboratory in 1948 by Walter Bird. [1]

The concept was implemented on a large scale by David H. Geiger with the United States pavilion at Expo '70 in Osaka, Japan in 1970. [2]

It is usually dome-shaped, since this shape creates the greatest volume for the least amount of material. To maintain structural integrity, the structure must be pressurized such that the internal pressure equals or exceeds any external pressure being applied to the structure (i.e. wind pressure). The structure does not have to be airtight to retain structural integrity—as long as the pressurization system that supplies internal pressure replaces any air leakage, the structure will remain stable. [3] All access to the structure interior must be equipped with some form of airlock—typically either two sets of parallel doors or a revolving door or both. Air-supported structures are secured by heavy weights on the ground, ground anchors, attachment to a foundation, or a combination of these.

Among its many uses are: sports and recreation facilities, warehousing, temporary shelters, and radomes. The structure can be either wholly, partial, or roof-only air supported. A fully air-supported structure can be intended to be a temporary or semi-temporary facility or permanent, whereas a structure with only an air-supported roof can be built as a permanent building.

Design

Shape

The shape of an air-supported structure is limited by the need to have the whole envelope surface evenly pressurized. If this is not the case, the structure will be unevenly supported, creating wrinkles and stress points in the pliable envelope which in turn may cause it to fail. [4]

In practice, any inflated surface involves a double curvature. Therefore, the most common shapes for air-supported structures are hemispheres, ovals, and half cylinders.

Structure

The main loads acting against the air-supported envelope are internal air pressure, wind, or weight from snow build-up. The structure is actively supported at all times by blowing in more air, which requires energy. [3]

To compensate against wind force and snow load, the structure's inflation is adjusted accordingly. Modern structures have computer controlled mechanical systems that monitor dynamic loads and automatically compensate the inflation for it. The better the quality of the structure, the higher forces and weight it can endure. The best quality structures can withstand winds up to 120 mph (190 km/h) and snow weight to 40 pounds per square yard [4] (21.7 kilograms per square meter).

The interior of the Tokyo Dome exemplifies how large an area can be spanned with an air-supported roof. Tokyo Dome 2015-5-12.JPG
The interior of the Tokyo Dome exemplifies how large an area can be spanned with an air-supported roof.

The air pressure on the envelope is equal to the air pressure exerted on the inside ground, pushing the whole structure up. Therefore, it needs to be securely anchored to the ground (or to the substructure in a roof-only design).

For wide span structures cables are required for anchoring and stabilization. Anchoring requires ballast (weights). Early anchoring designs incorporated sand bags, concrete blocks, bricks, or the like, typically placed around the perimeter on the seal skirt. Most modern design structures use proprietary anchoring systems.

The danger of sudden collapse is nearly negligible, because the structure will gradually deform or sag when subject to a heavy load or force (snow or wind). Only if these warning signs are ignored or not noticed, then the build-up of an extreme load may rupture the envelope, leading to a sudden deflation and collapse. [3]

In hot or cold climates, air conditioning adds to the energy requirement. In venues visited by millions of people per year, energy consumption may be a couple gigajoules per square meter. [5]

The RCA dome in Indianapolis used to have an inflatable roof. RCA Dome 07-02-2008 (2632586746).jpg
The RCA dome in Indianapolis used to have an inflatable roof.

A common misconception is that these structures are not meant to be permanent facilities, however all major corporations participating in this industry conform to some form of The International Building Codes. To be a permanent facility these domes have to be engineered to the same building codes as a traditional structure.[ citation needed ]

Air-supported structures or domes are also commonly known as "bubbles".

Material

The materials used for air-supported structures are similar to those used in tensile structures, namely synthetic fabrics such as fibreglass and polyester. In order to prevent deterioration from moisture and ultraviolet radiation, these materials are coated with polymers such as PVC and Teflon.

Depending on use and location, the structure may have inner linings made of lighter materials for insulation or acoustics. Materials used in modern air supported structures are usually translucent, therefore the use of lighting system inside the structure is often not required during the daytime.

Air pressure

The interior air pressure required for air-supported structures is not as much as most people expect and certainly not discernible when inside. The amount of pressure required is a function of the weight of the material - and the building systems suspended on it (lighting, ventilation, etc.) - and wind pressure. Yet it only amounts to less than 1% above atmospheric pressure. [6] Internal pressure is commonly measured in inches of water, inAq, and varies fractionally from 0.3 inAq for minimal inflation to 3 inAq for maximum, with 1 inAq being a standard pressurization level for normal operating conditions. In terms of the more common pounds per square inch, 1 inAq equates to a mere 0.037 psi (2.54 mBar, 254 Pa), [4]

Notable air-supported domes

In operation

Former notable domes

Similar concepts

See also

Related Research Articles

<span class="mw-page-title-main">Roof</span> Top covering of a building

A roof is the top covering of a building, including all materials and constructions necessary to support it on the walls of the building or on uprights, providing protection against rain, snow, sunlight, extremes of temperature, and wind. A roof is part of the building envelope.

<span class="mw-page-title-main">Tent</span> Temporary shelter which can be easily dismantled and which is portable

A tent is a shelter consisting of sheets of fabric or other material draped over, attached to a frame of poles or a supporting rope. While smaller tents may be free-standing or attached to the ground, large tents are usually anchored using guy ropes tied to stakes or tent pegs. First used as portable homes by nomads, tents are now more often used for recreational camping and as temporary shelters.

<span class="mw-page-title-main">Inflatable</span> Object filled with pressurized gas to maintain its size and shape

An inflatable is an object that can be inflated with a gas, usually with air, but hydrogen, helium, and nitrogen are also used. One of several advantages of an inflatable is that it can be stored in a small space when not inflated, since inflatables depend on the presence of a gas to maintain their size and shape. Function fulfillment per mass used compared with non-inflatable strategies is a key advantage. Stadium cushions, impact guards, vehicle wheel inner tubes, emergency air bags, and inflatable space habitats employ the inflatable principle. Inflation occurs through several strategies: pumps, ram-air, blowing, and suction.

<span class="mw-page-title-main">Truss</span> Rigid structure that consists of two-force members only

A truss is an assembly of members such as beams, connected by nodes, that creates a rigid structure.

<span class="mw-page-title-main">Radome</span> Weatherproof structures enclosing radar antennas

A radome is a structural, weatherproof enclosure that protects a radar antenna. The radome is constructed of material transparent to radio waves. Radomes protect the antenna from weather and conceal antenna electronic equipment from view. They also protect nearby personnel from being accidentally struck by quickly rotating antennas.

<span class="mw-page-title-main">Curtain wall (architecture)</span> Outer non-structural walls of a building

A curtain wall is an exterior covering of a building in which the outer walls are non-structural, instead serving to protect the interior of the building from the elements. Because the curtain wall façade carries no structural load beyond its own dead load weight, it can be made of lightweight materials. The wall transfers lateral wind loads upon it to the main building structure through connections at floors or columns of the building.

<span class="mw-page-title-main">Tensile structure</span> Structure whose members are only in tension

In structural engineering, a tensile structure is a construction of elements carrying only tension and no compression or bending. The term tensile should not be confused with tensegrity, which is a structural form with both tension and compression elements. Tensile structures are the most common type of thin-shell structures.

<span class="mw-page-title-main">Framing (construction)</span> Construction technique

Framing, in construction, is the fitting together of pieces to give a structure support and shape. Framing materials are usually wood, engineered wood, or structural steel. The alternative to framed construction is generally called mass wall construction, where horizontal layers of stacked materials such as log building, masonry, rammed earth, adobe, etc. are used without framing.

A tie, strap, tie rod, eyebar, guy-wire, suspension cables, or wire ropes, are examples of linear structural components designed to resist tension. It is the opposite of a strut or column, which is designed to resist compression. Ties may be made of any tension resisting material.

<span class="mw-page-title-main">Steel frame</span> Building technique using skeleton frames of vertical steel columns

Steel frame is a building technique with a "skeleton frame" of vertical steel columns and horizontal I-beams, constructed in a rectangular grid to support the floors, roof and walls of a building which are all attached to the frame. The development of this technique made the construction of the skyscraper possible. Steel frame has displaced its predecessor, the iron frame, in the early 20th century.

<span class="mw-page-title-main">Formwork</span> Molds for cast

Formwork is molds into which concrete or similar materials are either precast or cast-in-place. In the context of concrete construction, the falsework supports the shuttering molds. In specialty applications formwork may be permanently incorporated into the final structure, adding insulation or helping reinforce the finished structure.

<span class="mw-page-title-main">Skyscraper design and construction</span>

The design and construction of skyscrapers involves creating safe, habitable spaces in very high buildings. The buildings must support their weight, resist wind and earthquakes, and protect occupants from fire. Yet they must also be conveniently accessible, even on the upper floors, and provide utilities and a comfortable climate for the occupants. The problems posed in skyscraper design are considered among the most complex encountered given the balances required between economics, engineering, and construction management.

<span class="mw-page-title-main">Domestic roof construction</span> The supporting structure of a roof

Domestic roof construction is the framing and roof covering which is found on most detached houses in cold and temperate climates. Such roofs are built with mostly timber, take a number of different shapes, and are covered with a variety of materials.

<span class="mw-page-title-main">Masonry veneer</span>

Masonry veneer walls consist of a single non-structural external layer of masonry, typically made of brick, stone or manufactured stone. Masonry veneer can have an air space behind it and is technically called "anchored veneer". A masonry veneer attached directly to the backing is called "adhered veneer". The innermost element is structural, and may consist of masonry, concrete, timber or metal frame.

A fabric structure is a structure made of fabric, with or without a structural frame made from the weaving of the fabric itself. The technology provides end users a variety of aesthetic free-form building designs. Custom-made structures are engineered and fabricated to meet worldwide structural, flame retardant, weather-resistant, and natural force requirements. Fabric structures are considered a sub-category of tensile structure.

<span class="mw-page-title-main">Pre-engineered building</span> Construction technique

In structural engineering, a pre-engineered building (PEB) is designed by a PEB supplier or PEB manufacturer with a single design to be fabricated using various materials and methods to satisfy a wide range of structural and aesthetic design requirements. This is contrasted with a building built to a design that was created specifically for that building. Within some geographic industry sectors pre-engineered buildings are also called pre-engineered metal buildings (PEMB) or, as is becoming increasingly common due to the reduced amount of pre-engineering involved in custom computer-aided designs, simply engineered metal buildings (EMB).

Process duct work conveys large volumes of hot, dusty air from processing equipment to mills, baghouses to other process equipment. Process duct work may be round or rectangular. Although round duct work costs more to fabricate than rectangular duct work, it requires fewer stiffeners and is favored in many applications over rectangular ductwork.

Tornadoes, cyclones, and other storms with strong winds damage or destroy many buildings. However, with proper design and construction, the damage to buildings by these forces can be greatly reduced. A variety of methods can help a building survive strong winds and storm surge.

<span class="mw-page-title-main">Structural integrity and failure</span> Ability of a structure to support a designed structural load without breaking

Structural integrity and failure is an aspect of engineering that deals with the ability of a structure to support a designed structural load without breaking and includes the study of past structural failures in order to prevent failures in future designs.

Metal profile sheet systems are used to build cost efficient and reliable envelopes of mostly commercial buildings. They have evolved from the single skin metal cladding often associated with agricultural buildings to multi-layer systems for industrial and leisure application. As with most construction components, the ability of the cladding to satisfy its functional requirements is dependent on its correct specification and installation. Also important is its interaction with other elements of the building envelope and structure. Metal profile sheets are metal structural members that due to the fact they can have different profiles, with different heights and different thickness, engineers and architects can use them for a variety of buildings, from a simple industrial building to a high demand design building. Trapezoidal profiles are large metal structural members, which, thanks to the profiling and thickness, retain their high load bearing capability. They have been developed from the corrugated profile. The profile programme offered by specific manufacturers covers a total of approximately 60 profile shapes with different heights. Cassettes are components that are mainly used as the inner shell in dual-shell wall constructions. They are mainly used in walls today, even though they were originally designed for use in roofs.

References

  1. Collado Baíllo, Isabel. "Walter Bird y las primeras construcciones neumáticas". Revista Europea de Investigación en Arquitectura. 20: 119–140.
  2. "David Geiger, Engineer, 54, Dies". The New York Times. 1989-10-04.
  3. 1 2 3 Riddle, Mason (1 September 2010). "Air domes: last of a dying breed?". Fabric Architecture Magazine. Archived from the original on 21 May 2022.
  4. 1 2 3 D.A. Lutes (May 1971). "CBD-137 Air-Supported Structures". National Research Council Canada. Archived from the original on 2009-10-31. Retrieved 2009-10-19.
  5. Takai, Hiroaki (2014). Planning outline and analysis of actual energy operational performance from completion to present in Japanese and foreign large domes and stadiums — Tokyo Dome, Fukuoka Dome, Odate Dome, Sapporo Dome, Kaohsiung Stadium (PDF). World Sustainable Building. ISBN   978-84-697-1815-5.
  6. "Tokyo Dome 'Bigg Egg'". www.tensinet.com. Archived from the original on 16 April 2023.
  7. "University of Galway Connacht GAA Air Dome - Connacht GAA" . Retrieved 2024-06-11.
  8. Carlson, Chris (2020-03-16). "Carrier Dome roof deflation quietly marks end of an era in Syracuse and the country". The Post-Standard . Syracuse, NY. Retrieved 2020-03-16.
  9. "The Sun Dome". Archived from the original on 24 September 2015. Retrieved 29 March 2015.

Commons-logo.svg Media related to Inflatable buildings at Wikimedia Commons