An amateur radio propagation beacon is a radio beacon, whose purpose is the investigation of the propagation of radio signals. Most radio propagation beacons use amateur radio frequencies. They can be found on LF, MF, HF, VHF, UHF, and microwave frequencies. Microwave beacons are also used as signal sources to test and calibrate antennas and receivers. [1] [2]
The International Amateur Radio Union (IARU) and its member societies coordinate beacons established by radio amateurs.
Most beacons operate in continuous wave (A1A) and transmit their identification (call sign and location). Some of them send long dashes to facilitate signal strength measurement. A small number of beacons transmit Morse code by frequency-shift keying (F1A). A few beacons transmit signals in digital modulation modes, like radioteletype (F1B) and PSK31 (G1B).
In the US, unattended beacons on frequencies lower than the 10-meter band (~28 MHz) are not legal. [3]
Amateur experiments in the 2200-meter band (135.7–137.8 kHz) often involve operating temporary beacons.
In the United States and Canada, unlicensed experimenters ("LowFERs") establish low power beacons on radio frequencies between 160 kHz and 190 kHz.
The International Amateur Radio Union Region 2 (North and South America) bandplan for the 160-meter band reserves the range 1999 kHz to 2000 kHz for propagation beacons.
Most high frequency radio propagation beacons are found in the 10-meter band (28 MHz), where they are good indicators of Sporadic E ionospheric propagation. According to IARU bandplans, the following 28 MHz frequencies are allocated to radio propagation beacons:
IARU Region | Beacon Sub-bands (MHz) |
---|---|
R1 |
|
R2 [4] |
|
R3 |
|
Due to unpredictable and intermittent long-distance propagation, usually achieved by a combination of ionospheric conditions, beacons are very important in providing early warning for 6-meter band (50 MHz) openings. Beacons traditionally operate in the lower part of the band, in the range 50.000 MHz to 50.080 MHz.
IARU Region 1 is encouraging individual beacons to move to 50.4 MHz to 50.5 MHz. [4] [5] In the United States, the Federal Communications Commission (FCC) only permits unattended 6-meter beacon stations to operate between 50.060 and 50.080 MHz. [6]
Amateur beacons at 50 MHz have also been used as signal sources for academic propagation research [7]
Several countries in ITU Region 1 have access to frequencies in the 70 MHz region, called the 4-meter band. The band shares many propagation characteristics with 6 meters. The preferred location for beacons is 70.000–70.090 MHz; [5] however, in countries where this segment is not allocated to Amateur Radio, beacons may operate elsewhere in the band.
Brian Justin, WA1ZMS, of Forest, Virginia, applied for an experimental license to operate a propagation beacon on 4m with the FCC in January 2010. It was approved, and at 1200 UTC on Monday, May 3, 2010, the beacon went operational under the callsign WE9XFT. The beacon sits on Apple Orchard Mountain (4200 feet above sea level), a mountain along the Blueridge Parkway in Maidenhead grid square FM07fm, near Bedford, Virginia. Because there is no amateur band on 70 MHz in the United States, the beacon runs 24 hours a day under a non-amateur experimental license.
Justin told the ARRL that he had no plans to introduce the 4-meter band to the United States, despite the fact that numerous European governments allow amateurs rights on the band. He said, "This beacon is solely for radio scientific usage as an E-skip detecting device"
On 70.005 MHz, WE9XFT is transmitting 3 kW ERP to Europe. At the same location, Justin runs a 144 MHz remote-controlled transmitter, WA1ZMS. It is GPS locked and uses two 5-element stacked Yagis beaming at 60 degrees with a 500 W transmitter running at 7 kW ERP. Both signals are audible in the United States and Europe.
Beacons on 144 MHz and higher frequencies are mainly used to identify tropospheric radio propagation openings. It is not uncommon for VHF and UHF beacons to use directional antennas. Frequencies set aside for beacons on VHF and UHF bands vary widely in different ITU regions and countries.
Band | Beacon Sub-band (MHz) | ||
---|---|---|---|
ITU Region 1 | ITU Region 2 | ITU Region 3 | |
2 m | 144.400–144.491 [5] | 144.275–144.300 [4] [9] | none [10] |
1.25 m | — | 222.050–222.060 [4] [9] | — |
70 cm | 432.400–432.490 [5] | 432.300–432.400 [4] [9] | none [10] |
33 cm | — | 903.000–903.100 [4] [9] | — |
23 cm | 1,296.800–1,296.994 [5] | 1,296.200–1,296.400 [4] [9] | none [10] |
13 cm | 2,320.800–2,321.000 [5] | 2,304.300–2,304.400 [4] [9] | 2,304.300–2,304.400 [10] |
The beacon sub-bands in the United Kingdom also reflect IARU Region 1 recommendations. [11]
In addition to identifying propagation, microwave beacons are also used as signal sources to test and calibrate antennas and receivers. SHF beacons are not as common as beacons on the lower bands, and beacons above the 3-centimeter band (10 GHz) are unusual.
Band | Beacon Sub-band (MHz) | ||
---|---|---|---|
ITU Region 1 | ITU Region 2 | ITU Region 3 | |
9 cm | 3,400.800–3,400.995 [5] | 3,456.300–3,457.000 [4] [9] | 3,456.300–3,457.000 [10] |
5 cm | 5,760.800–5,760.990 [5] | 5,760.300–5,761.000 [4] [9] | 5,760.300–5,761.000 [10] |
3 cm | 10,368.800–10,368.990 [5] | 10,368.300–10,368.400 [4] [9] | 10.368.300–10.368.400 [10] |
1.2 cm | 24,048.800–24,048.995 [5] | 24,048.750–24,048.995 [4] | 24,048.750–24,048.995 [10] |
Most radio propagation beacons are operated by individual radio amateurs or amateur radio societies and clubs. As a result, there are frequent additions and deletions to the lists of beacons. There are, however a few major projects coordinated by organizations like the International Amateur Radio Union (IARU).
The International Beacon Project (IBP), which is coordinated by the Northern California DX Foundation and the International Amateur Radio Union, consists of 18 high frequency propagation beacons worldwide, which transmit in turns on 14.100 MHz, 18.110 MHz, 21.150 MHz, 24.930 MHz, and 28.200 MHz. [12]
The Deutscher Amateur-Radio-Club sponsors two beacons which transmit from Scheggerott, near Kiel ( JO44vq). [13] These beacons are DRA5 on 5195 kHz and DK0WCY on 10144 kHz. In addition to identification and location, every 10 minutes, these beacons transmit solar and geomagnetic bulletins. Transmissions are in Morse code for aural reception, RTTY and PSK31. [14] DK0WCY operates also a limited service beacon on 3579 kHz at 0720–0900 and 1600–1900 local time.
The Radio Society of Great Britain operates a radio propagation beacon GB3ORK on 5290 kHz, transmitting every 15 minutes commencing at 2 minutes past the hour. It is located in the Orkney Islands ( IO89ja).
GB3RAL, which is located at the Rutherford Appleton Laboratory, transmits continuously on a number of low-band and mid-band VHF frequencies – 40050, 50050, 60050 and 70050 kHz – as well as 28215 kHz in the 10-meter amateur band. [15]
A large-scale beacon project is underway using the WSPR transmission scheme included with the WSJT software suite. The loosely coordinated beacon transmitters and receivers, collectively known as the WSPRnet, report the real-time propagation characteristics of a number of frequency bands and geographical locations via the Internet. The WSPRnet website provides detailed propagation report databases and real-time graphical maps of propagation paths. [16]
The Synchronized Beacon Project (SBP) is an effort to deploy coordinated beacon transmitters on 50 MHz using a one-minute transmitting sequence of PI4, CW, and unmodulated carrier. Since modern beacon transmitters are multi-mode and frequency-agile, beacons that normally transmit on other time-multiplexed modes such as WSPR can take part in the SBP when not transmitting in their primary mode. Beacons alternating between frequencies on the same band should sign CALL/S when transmitting on the SBP frequency to ensure unique entries in band-specific propagation report databases. [17]
{{cite journal}}
: CS1 maint: numeric names: authors list (link) The article includes the following definition for beacons licensed in the Amateur Radio service: "A station in the Amateur Service or Amateur Satellite Service that autonomously transmits in a fixed format, which may include repeated data or information, for the study of propagation, determination of frequency or bearing, or for other experimental purposes".{{cite journal}}
: CS1 maint: numeric names: authors list (link){{cite web}}
: CS1 maint: numeric names: authors list (link){{cite book}}
: CS1 maint: numeric names: authors list (link){{cite journal}}
: CS1 maint: numeric names: authors list (link){{cite web}}
: CS1 maint: numeric names: authors list (link){{cite web}}
: CS1 maint: numeric names: authors list (link){{cite web}}
: CS1 maint: numeric names: authors list (link){{cite web}}
: CS1 maint: numeric names: authors list (link){{cite web}}
: CS1 maint: numeric names: authors list (link){{cite web}}
: CS1 maint: numeric names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link){{cite web}}
: CS1 maint: numeric names: authors list (link){{cite web}}
: CS1 maint: numeric names: authors list (link){{cite web}}
: CS1 maint: numeric names: authors list (link){{cite web}}
: CS1 maint: numeric names: authors list (link)This article is an overview of telecommunications in Malta.
Radioteletype (RTTY) is a telecommunications system consisting originally of two or more electromechanical teleprinters in different locations connected by radio rather than a wired link. Radioteletype evolved from earlier landline teleprinter operations that began in the mid-1800s. The US Navy Department successfully tested printing telegraphy between an airplane and ground radio station in 1922. Later that year, the Radio Corporation of America successfully tested printing telegraphy via their Chatham, Massachusetts, radio station to the R.M.S. Majestic. Commercial RTTY systems were in active service between San Francisco and Honolulu as early as April 1932 and between San Francisco and New York City by 1934. The US military used radioteletype in the 1930s and expanded this usage during World War II. From the 1980s, teleprinters were replaced by personal computers (PCs) running software to emulate teleprinters.
Shortwave radio is radio transmission using radio frequencies in the shortwave bands (SW). There is no official definition of the band range, but it always includes all of the high frequency band (HF), which extends from 3 to 30 MHz ; above the medium frequency band (MF), to the bottom of the VHF band.
Low frequency (LF) is the ITU designation for radio frequencies (RF) in the range of 30–300 kHz. Since its wavelengths range from 10–1 km, respectively, it is also known as the kilometre band or kilometre waves.
Medium frequency (MF) is the ITU designation for radio frequencies (RF) in the range of 300 kilohertz (kHz) to 3 megahertz (MHz). Part of this band is the medium wave (MW) AM broadcast band. The MF band is also known as the hectometer band as the wavelengths range from ten to one hectometers. Frequencies immediately below MF are denoted as low frequency (LF), while the first band of higher frequencies is known as high frequency (HF). MF is mostly used for AM radio broadcasting, navigational radio beacons, maritime ship-to-shore communication, and transoceanic air traffic control.
In radio, longwave, long wave or long-wave, and commonly abbreviated LW, refers to parts of the radio spectrum with wavelengths longer than what was originally called the medium-wave broadcasting band. The term is historic, dating from the early 20th century, when the radio spectrum was considered to consist of longwave (LW), medium-wave (MW), and short-wave (SW) radio bands. Most modern radio systems and devices use wavelengths which would then have been considered 'ultra-short'.
PSK31 or "Phase Shift Keying, 31 Baud", also BPSK31 and QPSK31, is a popular computer-sound card-generated radioteletype mode, used primarily by amateur radio operators to conduct real-time keyboard-to-keyboard chat, most often using frequencies in the high frequency amateur radio bands (near-shortwave). PSK31 is distinguished from other digital modes in that it is specifically tuned to have a data rate close to typing speed, and has an extremely narrow bandwidth, allowing many conversations in the same bandwidth as a single voice channel. This narrow bandwidth makes better use of the RF energy in a very narrow space thus allowing relatively low-power equipment to communicate globally using the same skywave propagation used by shortwave radio stations.
The Tilted Terminated Folded Dipole or Balanced Termination, Folded Dipole (BTFD) - also known as W3HH antenna - is a general-purpose shortwave antenna developed in the late 1940s by the United States Navy. It performs reasonably well over a broad frequency range, without marked dead spots in terms of either frequency, direction, or angle of radiation above the horizon.
Earth–Moon–Earth communication (EME), also known as Moon bounce, is a radio communications technique that relies on the propagation of radio waves from an Earth-based transmitter directed via reflection from the surface of the Moon back to an Earth-based receiver.
The 6-meter band is the lowest portion of the very high frequency (VHF) radio spectrum internationally allocated to amateur radio use. The term refers to the average signal wavelength of 6 meters.
Letter beacons are radio transmissions of uncertain origin and unknown purpose, consisting of only a single repeating Morse code letter. They have been classified into a number of groups according to transmission code and frequency, and it is supposed that the source for most of them is Russia and began during the Soviet Union.
The 10-meter band is a portion of the shortwave radio spectrum internationally allocated to amateur radio and amateur satellite use on a primary basis. The band consists of frequencies stretching from 28.000 to 29.700 MHz.
The 60-meter band or 5MHz band is a relatively new amateur radio allocation. First introduced in 2002, it was originally available in only a few countries, including the United States, United Kingdom, Norway, Finland, Denmark, Ireland and Iceland. Several decades in use, an increasing proportion of countries' telecommunications administrations – together with their government and military users – have permitted Amateur Radio operation in the 5MHz area on a short or longer-term basis, ranging from discrete channels to a frequency band allocation.
Amateur radio frequency allocation is done by national telecommunication authorities. Globally, the International Telecommunication Union (ITU) oversees how much radio spectrum is set aside for amateur radio transmissions. Individual amateur stations are free to use any frequency within authorized frequency ranges; authorized bands may vary by the class of the station license.
WSJT-X is a computer program used for weak-signal radio communication between amateur radio operators. The program was initially written by Joe Taylor, K1JT, but is now open source and is developed by a small team. The digital signal processing techniques in WSJT-X make it substantially easier for amateur radio operators to employ esoteric propagation modes, such as high-speed meteor scatter and moonbounce. Additionally WSJT is able to send signal reports to spotting networks such as PSK Reporter.
An international distress frequency is a radio frequency that is designated for emergency communication by international agreement.
The Yaesu VX series is a line of two sequences of compact amateur radio handheld transceivers produced by Yaesu. There is a line of ultra-compact lower-power dual-band transceivers that started with the VX-1R and was later updated with the VX-2R and VX-3R. There is also a line of 5 W tri-band transceivers that started with the VX-5R and was later updated with the VX-6R, VX-7R and VX-8R.
The International Beacon Project (IBP) is a worldwide network of radio propagation beacons. It consists of 18 continuous wave (CW) beacons operating on five designated frequencies in the high frequency band. The IBP beacons provide a means of assessing the prevailing ionospheric signal propagation characteristics to both amateur and commercial high frequency radio users.
The 5-meter band (60 MHz) is the middle portion of the very high frequency (VHF) radio spectrum allocated to amateur radio use.
The 8–meter band (40 MHz) is at present the lowest portion of the very high frequency (VHF) radio spectrum available for national amateur radio use. The term refers to the average signal wavelength of 8 meters.