Ammonium pertechnetate

Last updated
Ammonium pertechnetate
Ammonium Pertechnetate Avogadro.png
Ammonium pertechnetate.jpg
Ammonium pertechnetate
Names
IUPAC name
Ammonium pertechnetate
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/H2O.3O.Tc/h1H2;;;;/q;;;;+1/p-1 Yes check.svgY
    Key: WJULHBIORCQBSY-PUQAOBSFSA-O Yes check.svgY
  • [O-][Tc](=O)(=O)=O.[NH4+]
Properties
H4NO4Tc
Molar mass 180 g·mol−1
Related compounds
Other anions
Ammonium nitrate
Other cations
Sodium pertechnetate
Potassium pertechnetate
Calcium pertechnetate
Related compounds
Perchloric acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Ammonium pertechnetate is a chemical compound with the formula NH4TcO4. It is the ammonium salt of pertechnetic acid. The most common form uses 99Tc. [1] The compound is readily soluble in aqueous solutions forming ammonium and pertechnetate ions.

Contents

Synthesis

It can be synthesized by the reaction of pertechnetic acid and ammonium nitrate:

HTcO4 + NH4NO3 → NH4TcO4 + HNO3

It thermally decomposes under inert atmosphere at 700 °C to technetium dioxide:

NH4TcO4 → TcO2 + 2 H2O + 1/2 N2

Chemical properties

Passing hydrogen sulfide through acidic solutions of ammomium pertechnetate produces Technetium(VII) sulfide: [2] [3] [4]

2NH4TcO4 + 7H2S + 2HCl → Tc2S7↓ + 2NH4Cl + 8H2O

Related Research Articles

<span class="mw-page-title-main">Technetium</span> Chemical element with atomic number 43 (Tc)

Technetium is a chemical element; it has symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. Technetium and promethium are the only radioactive elements whose neighbours in the sense of atomic number are both stable. All available technetium is produced as a synthetic element. Naturally occurring technetium is a spontaneous fission product in uranium ore and thorium ore, or the product of neutron capture in molybdenum ores. This silvery gray, crystalline transition metal lies between manganese and rhenium in group 7 of the periodic table, and its chemical properties are intermediate between those of both adjacent elements. The most common naturally occurring isotope is 99Tc, in traces only.

<span class="mw-page-title-main">Group 7 element</span> Group of chemical elements

Group 7, numbered by IUPAC nomenclature, is a group of elements in the periodic table. It contains manganese (Mn), technetium (Tc), rhenium (Re) and bohrium (Bh). This group lies in the d-block of the periodic table, and are hence transition metals. This group is sometimes called the manganese group or manganese family after its lightest member; however, the group itself has not acquired a trivial name because it belongs to the broader grouping of the transition metals.

Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.

<span class="mw-page-title-main">Permanganate</span> Chemical compound

A permanganate is a chemical compound with the manganate(VII) ion, MnO
4
, the conjugate base of permanganic acid. Because the manganese atom has a +7 oxidation state, the permanganate(VII) ion is a strong oxidising agent. The ion is a transition metal ion with a tetrahedral structure. Permanganate solutions are purple in colour and are stable in neutral or slightly alkaline media. The exact chemical reaction depends on the carbon-containing reactants present and the oxidant used. For example, trichloroethane (C2H3Cl3) is oxidised by permanganate ions to form carbon dioxide (CO2), manganese dioxide (MnO2), hydrogen ions (H+), and chloride ions (Cl).

<span class="mw-page-title-main">Technetium-99m generator</span> Device

A technetium-99m generator, or colloquially a technetium cow or moly cow, is a device used to extract the metastable isotope 99mTc of technetium from a decaying sample of molybdenum-99. 99Mo has a half-life of 66 hours and can be easily transported over long distances to hospitals where its decay product technetium-99m is extracted and used for a variety of nuclear medicine diagnostic procedures, where its short half-life is very useful.

<span class="mw-page-title-main">Pertechnetate</span> Chemical compound or ion

The pertechnetate ion is an oxyanion with the chemical formula TcO
4
. It is often used as a convenient water-soluble source of isotopes of the radioactive element technetium (Tc). In particular it is used to carry the 99mTc isotope which is commonly used in nuclear medicine in several nuclear scanning procedures.

<span class="mw-page-title-main">Technetium(VII) oxide</span> Chemical compound

Technetium(VII) oxide is the chemical compound with the formula Tc2O7. This yellow volatile solid is a rare example of a molecular binary metal oxide, the other examples being RuO4, OsO4, and the unstable Mn2O7. It adopts a centrosymmetric corner-shared bi-tetrahedral structure in which the terminal and bridging Tc−O bonds are 167pm and 184 pm respectively and the Tc−O−Tc angle is 180°.

<span class="mw-page-title-main">Sodium pertechnetate</span> Chemical compound

Sodium pertechnetate is the inorganic compound with the formula NaTcO4. This colourless salt contains the pertechnetate anion, TcO
4
that has slightly distorted tetrahedron symmetry both at 296 K and at 100 K while the coordination polyhedron of the sodium cation is different from typical for scheelite structure. The radioactive 99m
Tc
O
4
anion is an important radiopharmaceutical for diagnostic use. The advantages to 99m
Tc
include its short half-life of 6 hours and the low radiation exposure to the patient, which allow a patient to be injected with activities of more than 30 millicuries. Na[99m
Tc
O
4
]
is a precursor to a variety of derivatives that are used to image different parts of the body.

<span class="mw-page-title-main">Ammonium perrhenate</span> Chemical compound

Ammonium perrhenate (APR) is the ammonium salt of perrhenic acid, NH4ReO4. It is the most common form in which rhenium is traded. It is a white salt; soluble in ethanol and water, and mildly soluble in NH4Cl. It was first described soon after the discovery of rhenium.

Technetium compounds are chemical compounds containing the chemical element technetium. Technetium can form multiple oxidation states, but often forms in the +4 and +7 oxidation states. Because technetium is radioactive, technetium compounds are extremely rare on Earth.

<span class="mw-page-title-main">Technetium-99m</span> Metastable nuclear isomer of technetium-99

Technetium-99m (99mTc) is a metastable nuclear isomer of technetium-99, symbolized as 99mTc, that is used in tens of millions of medical diagnostic procedures annually, making it the most commonly used medical radioisotope in the world.

<span class="mw-page-title-main">Technetium-99</span> Radioactive isotope produced by fission of uranium

Technetium-99 (99Tc) is an isotope of technetium which decays with a half-life of 211,000 years to stable ruthenium-99, emitting beta particles, but no gamma rays. It is the most significant long-lived fission product of uranium fission, producing the largest fraction of the total long-lived radiation emissions of nuclear waste. Technetium-99 has a fission product yield of 6.0507% for thermal neutron fission of uranium-235.

<span class="mw-page-title-main">Pertechnetic acid</span> Chemical compound

Pertechnetic acid (HTcO4) is a compound of technetium that is produced by reacting technetium(VII) oxide (Tc2O7) with water or reacting Tc metal or TcO2 with strong oxidizing acids, such as nitric acid, mixture of concentrated sulfuric acid with hydrogen peroxide or aqua regia. The dark red hygroscopic substance is a strong acid, with a pKa of 0.32, as such it exists almost entirely as the pertechnetate ion in aqueous solution. The red color in solution is thought to be due to the formation of the polyoxometallate Tc20O4−68. While fresh HTcO4 is white.

The perrhenate ion is the anion with the formula ReO
4
, or a compound containing this ion. The perrhenate anion is tetrahedral, being similar in size and shape to perchlorate and the valence isoelectronic permanganate. The perrhenate anion is stable over a broad pH range and can be precipitated from solutions with the use of organic cations. At normal pH, perrhenate exists as metaperrhenate, but at high pH mesoperrhenate forms. Perrhenate, like its conjugate acid perrhenic acid, features rhenium in the oxidation state of +7 with a d0 configuration. Solid perrhenate salts takes on the color of the cation.

<span class="mw-page-title-main">Potassium pertechnetate</span> Chemical compound

Potassium pertechnetate is a chemical compound of technetium and potassium, with the chemical formula of KTcO4.

Rhenium compounds are compounds formed by the transition metal rhenium (Re). Rhenium can form in many oxidation states, and compounds are known for every oxidation state from -3 to +7 except -2, although the oxidation states +7, +4, and +3 are the most common. Rhenium is most available commercially as salts of perrhenate, including sodium and ammonium perrhenates. These are white, water-soluble compounds. The tetrathioperrhenate anion [ReS4] is possible.

<span class="mw-page-title-main">Technetium(IV) oxide</span> Chemical compound

Technetium(IV) oxide, also known as technetium dioxide, is a chemical compound with the formula TcO2 which forms the dihydrate, TcO2·2H2O, which is also known as technetium(IV) hydroxide. It is a radioactive black solid which slowly oxidizes in air.

<span class="mw-page-title-main">Pertechnetyl fluoride</span> Chemical compound

Pertechnetyl fluoride is an inorganic compound, a salt of technetium and hydrofluoric acid with the chemical formula TcO
3
F
. The compound was originally synthesized by H. Selig and G. Malm in 1963.

<span class="mw-page-title-main">Rubidium pertechnetate</span> Chemical compound

Rubidium pertechnetate is a pertechnetate of rubidium, with the chemical formula RbTcO4.

<span class="mw-page-title-main">Technetium(VII) sulfide</span> Chemical compound

Technetium(VII) sulfide is a binary inorganic chemical compound of technetium metal and sulfur with the chemical formula Tc2S7.

References

  1. "Ammonium pertechnetate[99Tc]".
  2. Boschke, Friedrich L. (31 December 1981). Inorganic Chemistry. Walter de Gruyter GmbH & Co KG. p. 131. ISBN   978-3-11-270829-3 . Retrieved 23 July 2024.
  3. "CharChem. Technetium(VII) sulfide". easychem.org. Retrieved 23 July 2024.
  4. Poineau, Frederic; Burton-Pye, Benjamin P.; Sattelberger, Alfred P.; Czerwinski, Kenneth R.; German, Konstantin E.; Fattahi, Massoud (2018). "Speciation and reactivity of heptavalent technetium in strong acids". New Journal of Chemistry. 42 (10): 7522–7528. doi:10.1039/c7nj04912a . Retrieved 23 July 2024.