Annwoodia

Last updated

Annwoodia
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Annwoodia

Boden et al. 2017 [1]
Species

A. aquaesulis

The genus Annwoodia was named in 2017 to circumscribe an organism previously described as a member of the genus Thiobacillus , Thiobacillus aquaesulis - the type and only species is Annwoodia aquaesulis, [2] which was isolated from the geothermal waters of the Roman Baths in the city of Bath in the United Kingdom by Ann P. Wood and Donovan P. Kelly [3] of the University of Warwick - the genus was subsequently named to honour Wood's contribution to microbiology. [2] The genus falls within the family Thiobacillaceae along with Thiobacillus and Sulfuritortus , [2] [4] both of which comprise autotrophic organisms dependent on thiosulfate, other sulfur oxyanions and sulfide as electron donors for chemolithoheterotrophic growth. Whilst Annwoodia spp. and Sulfuritortus spp. are thermophilic, Thiobacillus spp. are mesophilic. [4]

A. aquaesulis is moderately thermophilic with an optimum temperature of 43 °C and a temperature range of 30 °C to 55 °C - a similar temperature profile to the related genus Sulfuritortus [4] - and is a facultative chemolithoautotroph that grows on reduced sulfur oxyanions such as thiosulfate as the electron donor and carbon dioxide or bicarbonate as the carbon source. Unlike Thiobacillus spp., Annwoodia spp. do not produce tetrathionate during growth on thiosulfate and can also grow heterotrophically on nutrient broth. Elementary sulfur is deposited by the organism in batch culture with thiosulfate as the electron donor, but not in chemostat culture. A. aquaesulis can use nitrate as a terminal electron acceptor, as well as molecular oxygen. [3] [2] The dominant respiratory quinone is ubiquinone-8 and the G+C fraction of the type strain of the type species is 67.5 mol%. [2] All members of the genus produce volutin (polyphosphate) granules but not capsules or endospores. A. aquaesulis has a pH optimum of 7.5-8.0 and pH range of 7.0 to 9.0. Whilst nutrient broth and yeast extract will support heterotrophic growth, simple carbon compounds and ions such as sugars, organic acids, formate and monomethylamine do not support growth. Ammonium is the only source of nitrogen.

Annwoodia aquaesulis strains have been detected in mixed-population packed-bed reactors containing limestone as a source of carbon, elementary sulfur as the electron donor and nitrate as the terminal electron acceptor, [5] as well as in karstic sulfidic thermal groundwater ecosystems of broad similarity to those from which the type strain was isolated [6] [7]

Annwoodia aquaesulis grown on thiosulfate, tetrathionate or trithionate has high growth yields, which are broadly similar to those of Thermithiobacillus spp., and are higher than members of the closely related genus Thiobacillus , indicating core metabolic differences. [2] [3] This high yield was observed in spite of 70% more carbon dioxide being fixed than could be accounted for as biomass, indicating the excretion of a carbon intermediate, which is not observed in Thermithiobacillus tepidarius , which was isolated from the same location [3] [8] at the Roman Baths in Bath, also by enrichment culture on thiosulfate as the sole electron donor and molecular oxygen as the terminal electron acceptor.

Related Research Articles

Primary nutritional groups are groups of organisms, divided in relation to the nutrition mode according to the sources of energy and carbon, needed for living, growth and reproduction. The sources of energy can be light or chemical compounds; the sources of carbon can be of organic or inorganic origin.

<i>Chloroflexus aurantiacus</i> Species of bacterium

Chloroflexus aurantiacus is a photosynthetic bacterium isolated from hot springs, belonging to the green non-sulfur bacteria. This organism is thermophilic and can grow at temperatures from 35 °C to 70 °C. Chloroflexus aurantiacus can survive in the dark if oxygen is available. When grown in the dark, Chloroflexus aurantiacus has a dark orange color. When grown in sunlight it is dark green. The individual bacteria tend to form filamentous colonies enclosed in sheaths, which are known as trichomes.

<span class="mw-page-title-main">Nitrosomonadales</span> Order of bacteria

The Nitrosomonadales are an order of the class Betaproteobacteria in the phylum "Pseudomonadota". Like all members of their class, they are Gram-negative.

The Rhodocyclaceae are a family of gram-negative bacteria. They are given their own order in the beta subgroup of Pseudomonadota, and include many genera previously assigned to the family Pseudomonadaceae.

The Hydrogenophilaceae are a family of the Hydrogenophilalia, with two genera – Hydrogenophilus and Tepidiphilus. Like all Pseudomonadota, they are Gram-negative. All known species are thermophilic, growing around 50 °C and using molecular hydrogen or organic molecules as their source of electrons to support growth - some species are autotrophs.

Thiobacillus is a genus of Gram-negative Betaproteobacteria. Thiobacillus thioparus is the type species of the genus, and the type strain thereof is the StarkeyT strain, isolated by Robert Starkey in the 1930s from a field at Rutgers University in the United States of America. While over 30 "species" have been named in this genus since it was defined by Martinus Beijerinck in 1904,, most names were never validly or effectively published. The remainder were either reclassified into Paracoccus, Starkeya ; Sulfuriferula, Annwoodia, Thiomonas ; Halothiobacillus, Guyparkeria, or Thermithiobacillus or Acidithiobacillus. The very loosely defined "species" Thiobacillus trautweinii was where sulfur oxidising heterotrophs and chemolithoheterotrophs were assigned in the 1910-1960s era, most of which were probably Pseudomonas species. Many species named in this genus were never deposited in service collections and have been lost.

<i>Acidithiobacillus</i> Genus of bacteria

Acidithiobacillus is a genus of the Acidithiobacillia in the phylum "Pseudomonadota". This genus includes ten species of acidophilic microorganisms capable of sulfur and/or iron oxidation: Acidithiobacillus albertensis, Acidithiobacillus caldus, Acidithiobacillus cuprithermicus, Acidithiobacillus ferrianus, Acidithiobacillus ferridurans, Acidithiobacillus ferriphilus, Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, Acidithiobacillus sulfuriphilus, and Acidithiobacillus thiooxidans.A. ferooxidans is the most widely studied of the genus, but A. caldus and A. thiooxidans are also significant in research. Like all "Pseudomonadota", Acidithiobacillus spp. are Gram-negative and non-spore forming. They also play a significant role in the generation of acid mine drainage; a major global environmental challenge within the mining industry. Some species of Acidithiobacillus are utilized in bioleaching and biomining. A portion of the genes that support the survival of these bacteria in acidic environments are presumed to have been obtained by horizontal gene transfer.

<i>Halothiobacillus</i> Genus of bacteria

Halothiobacillus is a genus in the Gammaproteobacteria. Both species are obligate aerobic bacteria; they require oxygen to grow. They are also halotolerant; they live in environments with high concentrations of salt or other solutes, but don't require them in order to grow.

<span class="mw-page-title-main">Sulfur-reducing bacteria</span> Microorganisms able to reduce elemental sulfur to hydrogen sulfide

Sulfur-reducing bacteria are microorganisms able to reduce elemental sulfur (S0) to hydrogen sulfide (H2S). These microbes use inorganic sulfur compounds as electron acceptors to sustain several activities such as respiration, conserving energy and growth, in absence of oxygen. The final product of these processes, sulfide, has a considerable influence on the chemistry of the environment and, in addition, is used as electron donor for a large variety of microbial metabolisms. Several types of bacteria and many non-methanogenic archaea can reduce sulfur. Microbial sulfur reduction was already shown in early studies, which highlighted the first proof of S0 reduction in a vibrioid bacterium from mud, with sulfur as electron acceptor and H
2
as electron donor. The first pure cultured species of sulfur-reducing bacteria, Desulfuromonas acetoxidans, was discovered in 1976 and described by Pfennig Norbert and Biebel Hanno as an anaerobic sulfur-reducing and acetate-oxidizing bacterium, not able to reduce sulfate. Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction. Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds. In general, sulfate-reducing bacteria are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its abundancy and thermodynamic stability, sulfate is the most studied electron acceptor for anaerobic respiration that involves sulfur compounds. Elemental sulfur, however, is very abundant and important, especially in deep-sea hydrothermal vents, hot springs and other extreme environments, making its isolation more difficult. Some bacteria – such as Proteus, Campylobacter, Pseudomonas and Salmonella – have the ability to reduce sulfur, but can also use oxygen and other terminal electron acceptors.

<span class="mw-page-title-main">Betaproteobacteria</span> Class of bacteria

Betaproteobacteria are a class of Gram-negative bacteria, and one of the eight classes of the phylum Pseudomonadota.

Thauera is a genus of Gram-negative bacteria in the family Zoogloeaceae of the order Rhodocyclales of the Betaproteobacteria. The genus is named for the German microbiologist Rudolf Thauer. Most species of this genus are motile by flagella and are mostly rod-shaped. The species occur in wet soil and polluted freshwater.

<span class="mw-page-title-main">Thiosulfate dehydrogenase</span>

Thiosulfate dehydrogenase is an enzyme that catalyzes the chemical reaction:

Thermithiobacillus tepidarius is a member of the Acidithiobacillia isolated from the thermal groundwaters of the Roman Baths at Bath, Somerset, United Kingdom. It was previously placed in the genus Thiobacillus. The organism is a moderate thermophile, 43–45 °C (109–113 °F), and an obligate aerobic chemolithotrophic autotroph. Despite having an optimum pH of 6.0–7.5, growth can continue to an acid medium of pH 4.8. Growth can only occur on reduced inorganic sulfur compounds and elementary sulfur, but unlike some species in other genus of the same family, Acidithiobacillus, Thermithiobacillus spp. are unable to oxidise ferrous iron or iron-containing minerals.

Azonexus is a genus of gram-negative, non-spore-forming, highly motile bacteria that is the type genus of the family Azonexaceae which is in the order Rhodocyclales of the class Betaproteobacteria.

Ferribacterium is a genus of bacteria from the family of Rhodocyclaceae which belongs to the class of Betaproteobacteria. Up to now there is only one species of this genus known.

Acidithiobacillus caldus formerly belonged to the genus Thiobacillus prior to 2000, when it was reclassified along with a number of other bacterial species into one of three new genera that better categorize sulfur-oxidizing acidophiles. As a member of the Gammaproteobacteria class of Pseudomonadota, A. caldus may be identified as a Gram-negative bacterium that is frequently found in pairs. Considered to be one of the most common microbes involved in biomining, it is capable of oxidizing reduced inorganic sulfur compounds (RISCs) that form during the breakdown of sulfide minerals. The meaning of the prefix acidi- in the name Acidithiobacillus comes from the Latin word acidus, signifying that members of this genus love a sour, acidic environment. Thio is derived from the Greek word thios and describes the use of sulfur as an energy source, and bacillus describes the shape of these microorganisms, which are small rods. The species name, caldus, is derived from the Latin word for warm or hot, denoting this species' love of a warm environment.

<i>Acidithiobacillus thiooxidans</i> Species of bacterium

Acidithiobacillus thiooxidans, formerly known as Thiobacillus thiooxidans until its reclassification into the newly designated genus Acidithiobacillus of the Acidithiobacillia subclass of Pseudomonadota, is a Gram-negative, rod-shaped bacterium that uses sulfur as its primary energy source. It is mesophilic, with a temperature optimum of 28 °C. This bacterium is commonly found in soil, sewer pipes, and cave biofilms called snottites. A. thiooxidans is used in the mining technique known as bioleaching, where metals are extracted from their ores through the action of microbes.

Methylophaga thiooxydans is a methylotrophic bacterium that requires high salt concentrations for growth. It was originally isolated from a culture of the algae Emiliania huxleyi, where it grows by breaking down dimethylsulfoniopropionate from E. hexleyi into dimethylsulfide and acrylate. M. thiooxydans has been implicated as a dominant organism in phytoplankton blooms, where it consumes dimethylsulfide, methanol and methyl bromide released by dying phytoplankton. It was also identified as one of the dominant organisms present in the plume following the Deepwater Horizon oil spill, and was identified as a major player in the breakdown of methanol in coastal surface water in the English channel.

<span class="mw-page-title-main">Microbial oxidation of sulfur</span>

Microbial oxidation of sulfur is the oxidation of sulfur by microorganisms to build their structural components. The oxidation of inorganic compounds is the strategy primarily used by chemolithotrophic microorganisms to obtain energy to survive, grow and reproduce. Some inorganic forms of reduced sulfur, mainly sulfide (H2S/HS) and elemental sulfur (S0), can be oxidized by chemolithotrophic sulfur-oxidizing prokaryotes, usually coupled to the reduction of oxygen (O2) or nitrate (NO3). Anaerobic sulfur oxidizers include photolithoautotrophs that obtain their energy from sunlight, hydrogen from sulfide, and carbon from carbon dioxide (CO2).

Ann Patricia Wood is a retired British biochemist and bacteriologist who specialized in the ecology, taxonomy and physiology of sulfur-oxidizing chemolithoautotrophic bacteria and how methylotrophic bacteria play a role in the degradation of odour causing compounds in the human mouth, vagina and skin. The bacterial genus Annwoodia was named to honor her contributions to microbial research in 2017.

References

  1. Parte, A.C. "Annwoodia". LPSN .
  2. 1 2 3 4 5 6 Boden R, Hutt LP, Rae AW (2017). "Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the Proteobacteria, and four new families within the orders Nitrosomonadales and Rhodocyclales". International Journal of Systematic and Evolutionary Microbiology. 67 (5): 1191–1205. doi: 10.1099/ijsem.0.001927 . hdl: 10026.1/8740 . PMID   28581923.
  3. 1 2 3 4 Wood AP, Kelly DP (1988). "Isolation and physiological characterization of Thiobacillus aquaesulis new-species a novel facultatively autotrophic moderate thermophile". Archives of Microbiology. 149 (4): 339–343. doi:10.1007/BF00411653. S2CID   12123675.
  4. 1 2 3 Kojima H, Wanatabe M, Fukuil M (2017). "Sulfuritortus calidifontis gen. nov., sp. nov., a sulfur oxidizer isolated from a hot spring microbial mat" (PDF). International Journal of Systematic and Evolutionary Microbiology. 69 (5): 1355–1358. doi: 10.1099/ijsem.0.001813 . PMID   28113046.
  5. Kilic A, Sahinkaya E, Cinar O (2014). "Kinetics of autotrophic denitrification process and the impact of sulphur/limestone ratio on the process performance". Environmental Technology. 35 (21–24): 2796–2804. doi:10.1080/09593330.2014.922127. PMID   25176483. S2CID   25363921.
  6. Miseta R, Palatinszky M, Makk J, Márialigeti K, Borsodi A (2012). "Phylogenetic Diversity of Bacterial Communities Associated with Sulfurous Karstic Well Waters of a Hungarian Spa". Geomicrobiology Journal. 29 (2): 101–113. doi:10.1080/01490451.2011.558563. S2CID   86056863.
  7. Anda D, Makk J, Krett G, Jurecska L, Márialigeti K, Mádl-Szőnyi J, Borsodi AK (2015). "Thermophilic prokaryotic communities inhabiting the biofilm and well water of a thermal karst system located in Budapest (Hungary)". Extremophiles. 19 (4): 787–797. doi:10.1007/s00792-015-0754-1. PMID   25952671. S2CID   13352495.
  8. Wood AP, Kelly DP (1986). "Chemolithotrophic metabolism of the newly-isolated moderately thermophilic, obligately autotrophic Thiobacillus tepidarius". Archives of Microbiology. 144: 71–77. doi:10.1007/BF00454959. S2CID   22219334.