Aplysia gill and siphon withdrawal reflex

Last updated

The Aplysia gill and siphon withdrawal reflex (GSWR) is an involuntary, defensive reflex of the sea hare Aplysia californica , a large shell-less sea snail or sea slug. This reflex causes the sea hare's delicate siphon and gill to be retracted when the animal is disturbed. [1] Aplysia californica is used in neuroscience research for studies of the cellular basis of behavior including: habituation, dishabituation, and sensitization, because of the simplicity and relatively large size of the underlying neural circuitry. [1]

Contents

Eric Kandel, recipient of the Nobel Prize in Physiology or Medicine in 2000 for his work with Aplysia californica, was involved in pioneering research into this reflex in the 1960s and 1970s.

Nonassociative learning

Nonassociative learning is a change of the behavior of an animal due to an experience from specific kinds of stimuli. In contrast to associative learning the behavioral change is not caused by the animals learning that a particular temporal association occurs between the stimuli. There are three different forms of nonassociative learning examined in Aplysia: habituation, dishabituation and sensitization. Eric Kandel and colleagues were the first to demonstrate that Aplysia californica is capable of displaying both habituation and dishabituation. [1]

Habituation in Aplysia californica occurs when a stimulus is repeatedly presented to an animal and there is a progressive decrease in response to that particular stimulus. [1]

Dishabituation in Aplysia californica occurs when the animal is presented with another novel stimulus and a partial or complete restoration of a habituated response occurs. [1]

Sensitization in Aplysia californica is the increase of a response due to the presentation of a novel, often noxious, stimulus. [1]

Gill and siphon withdrawal reflex (GSWR)

A two-component reflex is triggered when a weak or moderate stimulus is applied to the siphon or the mantle shelf. These two components consist of two reflex acts, the siphon-withdrawal reflex and the gill-withdrawal reflex. Together they form a reflex pattern with short latency which protects the animal's gill and siphon from potentially threatening stimuli. [2]

Both central ganglia and peripheral neurons are often involved in the neural control of behavior in molluscs. In molluscs such as Aplysia californica the peripheral motor neurons are more extensive, as opposed to vertebrates, and innervate somatic (locomotor and appendageal) muscles. Central pathways are activated by weak stimuli applied at some distance from the target effector structure and peripheral pathways are activated when the stimuli is applied at a distance or directly on the target effector structure. [2]

A stimulus to the siphon (weak or moderate) is mediated by abdominal ganglion (55%) and by peripheral motor neurons (45%) and is activated simultaneously. [2]

By using preparations of Aplysia californica six central motor neurons have been found in the abdominal ganglion that produce movements of the gill. Stimulation of the cells named L7, LDG1, LDG2 and RDG results in large gill contractions and stimulation of L9G1 and L9G2 produces smaller contractions. [2]

In the abdominal ganglion has seven central motor neurons been found that also produce movements of the siphon. LDS1, LDS2, LDS3, RDS, LBS1, LBS2, and LBS3 control contraction and constriction of the siphon. The siphon is additionally innervated by about 30 peripheral motor neurons. [2]

Kandel and colleagues used preparations of Aplysia californica where individuals were restrained in small aquariums in a manner that the gill was exposed. A tactile stimulus was administered to the siphon and elicited the gill and siphon withdrawal reflex. A photocell was placed under the gill to record amplitude and duration of the response elicited by the stimulus. [1] [2]

Habituation was observed when the stimulus was delivered repeatedly to the siphon. Stimulus every 90 seconds resulted in a rapidly declined response. By delivering an electric shock to the tail the response was rapidly restored, and dishabituation occurred. Sensitization was observed when a strong stimulus was administered to the tail, thus enhancing a completely rested reflex in Aplysia californica. [1] [2]

Related Research Articles

<span class="mw-page-title-main">Nervous system</span> Part of an animal that coordinates actions and senses

In biology, the nervous system is the highly complex part of an animal that coordinates its actions and sensory information by transmitting signals to and from different parts of its body. The nervous system detects environmental changes that impact the body, then works in tandem with the endocrine system to respond to such events. Nervous tissue first arose in wormlike organisms about 550 to 600 million years ago. In vertebrates it consists of two main parts, the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS consists of the brain and spinal cord. The PNS consists mainly of nerves, which are enclosed bundles of the long fibers or axons, that connect the CNS to every other part of the body. Nerves that transmit signals from the brain are called motor nerves or efferent nerves, while those nerves that transmit information from the body to the CNS are called sensory nerves or afferent. Spinal nerves are mixed nerves that serve both functions. The PNS is divided into three separate subsystems, the somatic, autonomic, and enteric nervous systems. Somatic nerves mediate voluntary movement. The autonomic nervous system is further subdivided into the sympathetic and the parasympathetic nervous systems. The sympathetic nervous system is activated in cases of emergencies to mobilize energy, while the parasympathetic nervous system is activated when organisms are in a relaxed state. The enteric nervous system functions to control the gastrointestinal system. Both autonomic and enteric nervous systems function involuntarily. Nerves that exit from the cranium are called cranial nerves while those exiting from the spinal cord are called spinal nerves.

<span class="mw-page-title-main">Eric Kandel</span> American neuropsychiatrist

Eric Richard Kandel is an Austrian-born American medical doctor who specialized in psychiatry, a neuroscientist and a professor of biochemistry and biophysics at the College of Physicians and Surgeons at Columbia University. He was a recipient of the 2000 Nobel Prize in Physiology or Medicine for his research on the physiological basis of memory storage in neurons. He shared the prize with Arvid Carlsson and Paul Greengard.

In biology, a reflex, or reflex action, is an involuntary, unplanned sequence or action and nearly instantaneous response to a stimulus.

<span class="mw-page-title-main">California sea hare</span> Species of gastropod

The California sea hare is a species of sea slug in the sea hare family, Aplysiidae. It is found in the Pacific Ocean, off the coast of California in the United States and northwestern Mexico.

<span class="mw-page-title-main">Nociceptor</span> Sensory neuron that detects pain

A nociceptor is a sensory neuron that responds to damaging or potentially damaging stimuli by sending "possible threat" signals to the spinal cord and the brain. The brain creates the sensation of pain to direct attention to the body part, so the threat can be mitigated; this process is called nociception.

Habituation is a form of non-associative learning in which an innate (non-reinforced) response to a stimulus decreases after repeated or prolonged presentations of that stimulus. Responses that habituate include those that involve the intact organism or those that involve only components of the organism. The broad ubiquity of habituation across all biologic phyla has resulted in it being called "the simplest, most universal form of learning...as fundamental a characteristic of life as DNA." Functionally-speaking, by diminishing the response to an inconsequential stimulus, habituation is thought to free-up cognitive resources to other stimuli that are associated with biologically important events. For example, organisms may habituate to repeated sudden loud noises when they learn these have no consequences. A progressive decline of a behavior in a habituation procedure may also reflect nonspecific effects such as fatigue, which must be ruled out when the interest is in habituation. Habituation is clinically relevant, as a number of neuropsychiatric conditions, including autism, schizophrenia, migraine, and Tourette's, show reductions in habituation to a variety of stimulus-types both simple (tone) and complex (faces).

<span class="mw-page-title-main">Aplysiidae</span> Family of gastropods

Aplysiidae is the only family in the superfamily Aplysioidea, within the clade Anaspidea. These animals are commonly called sea hares because, unlike most sea slugs, they are often quite large, and when they are underwater, their rounded body shape and the long rhinophores on their heads mean that their overall shape resembles that of a sitting rabbit or hare. Sea hares are however sea snails with shells reduced to a small plate hidden between the parapodia, and some species are extremely large. The Californian black sea hare, Aplysia vaccaria is arguably the largest living gastropod species, and is certainly the largest living heterobranch gastropod.

<i>Aplysia</i> Genus of sea slugs

Aplysia is a genus of medium-sized to extremely large sea slugs, specifically sea hares, which are one clade of large sea slugs, marine gastropod mollusks.

<span class="mw-page-title-main">Caridoid escape reaction</span> Innate escape mechanism by crustaceans

The caridoid escape reaction, also known as lobstering or tail-flipping, refers to an innate escape mechanism in marine and freshwater crustaceans such as lobsters, krill, shrimp and crayfish.

Sensitization is a non-associative learning process in which repeated administration of a stimulus results in the progressive amplification of a response. Sensitization often is characterized by an enhancement of response to a whole class of stimuli in addition to the one that is repeated. For example, repetition of a painful stimulus may make one more responsive to a loud noise.

<span class="mw-page-title-main">Scratch reflex</span> Response to activation of sensory neurons

The scratch reflex is a response to activation of sensory neurons whose peripheral terminals are located on the surface of the body. Some sensory neurons can be activated by stimulation with an external object such as a parasite on the body surface. Alternatively, some sensory neurons can respond to a chemical stimulus that produces an itch sensation. During a scratch reflex, a nearby limb reaches toward and rubs against the site on the body surface that has been stimulated. The scratch reflex has been extensively studied to understand the functioning of neural networks in vertebrates. Despite decades of research, key aspects of the scratch reflex are still unknown, such as the neural mechanisms by which the reflex is terminated.

<span class="mw-page-title-main">Escape reflex</span>

Escape reflex, or escape behavior, is any kind of escape response found in an animal when it is presented with an unwanted stimulus. It is a simple reflectory reaction in response to stimuli indicative of danger, that initiates an escape motion of an animal. The escape response has been found to be processed in the telencephalon.

Escape response, escape reaction, or escape behavior is a mechanism by which animals avoid potential predation. It consists of a rapid sequence of movements, or lack of movement, that position the animal in such a way that allows it to hide, freeze, or flee from the supposed predator. Often, an animal's escape response is representative of an instinctual defensive mechanism, though there is evidence that these escape responses may be learned or influenced by experience.

Ladislav Tauc (1926–1999) was a French neuroscientist, born in Pardubice, Czechoslovakia.

<span class="mw-page-title-main">Vision in toads</span>

The neural basis of prey detection, recognition, and orientation was studied in depth by Jörg-Peter Ewert in a series of experiments that made the toad visual system a model system in neuroethology. He began by observing the natural prey catching behavior of the common European toad.

The Mauthner cells are a pair of big and easily identifiable neurons located in the rhombomere 4 of the hindbrain in fish and amphibians that are responsible for a very fast escape reflex. The cells are also notable for their unusual use of both chemical and electrical synapses.

<span class="mw-page-title-main">Pain in invertebrates</span> Contentious issue

Pain in invertebrates is a contentious issue. Although there are numerous definitions of pain, almost all involve two key components. First, nociception is required. This is the ability to detect noxious stimuli which evokes a reflex response that moves the entire animal, or the affected part of its body, away from the source of the stimulus. The concept of nociception does not necessarily imply any adverse, subjective feeling; it is a reflex action. The second component is the experience of "pain" itself, or suffering—i.e., the internal, emotional interpretation of the nociceptive experience. Pain is therefore a private, emotional experience. Pain cannot be directly measured in other animals, including other humans; responses to putatively painful stimuli can be measured, but not the experience itself. To address this problem when assessing the capacity of other species to experience pain, argument-by-analogy is used. This is based on the principle that if a non-human animal's responses to stimuli are similar to those of humans, it is likely to have had an analogous experience. It has been argued that if a pin is stuck in a chimpanzee's finger and they rapidly withdraw their hand, then argument-by-analogy implies that like humans, they felt pain. It has been questioned why the inference does not then follow that a cockroach experiences pain when it writhes after being stuck with a pin. This argument-by-analogy approach to the concept of pain in invertebrates has been followed by others.

<span class="mw-page-title-main">Heterosynaptic plasticity</span>

Synaptic plasticity refers to a chemical synapse's ability to undergo changes in strength. Synaptic plasticity is typically input-specific, meaning that the activity in a particular neuron alters the efficacy of a synaptic connection between that neuron and its target. However, in the case of heterosynaptic plasticity, the activity of a particular neuron leads to input unspecific changes in the strength of synaptic connections from other unactivated neurons. A number of distinct forms of heterosynaptic plasticity have been found in a variety of brain regions and organisms. These different forms of heterosynaptic plasticity contribute to a variety of neural processes including associative learning, the development of neural circuits, and homeostasis of synaptic input.

Thomas Carew, Dean of the Faculty of Arts and Sciences at New York University, is an American neuroscientist whose interests center on the behavioral, cellular, and molecular analyses of learning and memory. His work provides provide empirical support for the idea that different temporal phases of memory consolidation can be best identified not by their different temporal domains, but by their molecular signatures.

<span class="mw-page-title-main">Dishabituation</span>

Dishabituation is a form of recovered or restored behavioral response wherein the reaction towards a known stimulus is enhanced, as opposed to habituation. Initially, it was proposed as an explanation to increased response for a habituated behavior by introducing an external stimulus; however, upon further analysis, some have suggested that a proper analysis of dishabituation should be taken into consideration only when the response is increased by implying the original stimulus.

References

  1. 1 2 3 4 5 6 7 8 Carew, T. J. (2000). Behavioral Neurobiology: The Cellular Organization of Natural Behavior. Sinauer Associates, Inc.
  2. 1 2 3 4 5 6 7 Kandel, E. R. (1976). Cellular Basis of Behavior, an introduction to behavioral neurobiology. W. H. Freeman and Company.

Further reading