Dishabituation

Last updated

Dishabituation (or dehabituation) is a form of recovered or restored behavioral response wherein the reaction towards a known stimulus is enhanced, as opposed to habituation. [1] Initially, it was proposed as an explanation to increased response for a habituated behavior by introducing an external stimulus; [2] however, upon further analysis, some have suggested that a proper analysis of dishabituation should be taken into consideration only when the response is increased by implying the original stimulus. [3]

Contents

Based on studies conducted over habituation's dual-process theory which attributed towards dishabituation, it is also determined that the latter was independent of any behavioral sensitization. [4]

An example of dishabituation is the response of a receptionist in a scenario where a delivery truck arrives at 9:00AM every morning. The first few times it arrives it is noticed by the receptionist, and after weeks, the receptionist does not respond as strongly. One day the truck does not arrive, and the receptionist notices its absence. When it arrives the next day, the receptionist's response is stronger when it arrives as expected.

History

The phenomenon was studied by an early scientist Samuel Jackson Holmes in 1912, while he was studying the animal behavior in sea urchins. Later in 1933, George Humphrey—while studying the same effects in human babies and extensively over lower vertebrates—argued that dishabituation is in fact the removal of habituation altogether, to a behavior that was not conditioned to begin with. [5]

Mechanism

In humans

According to the dual-process theory of habituation, dishabituation is characterized by an increase in responding to a habituated stimulus after introducing a deviant, to sensitize a change in arousal. [6] [4] For example, when hearing the ticking of a clock and the clock makes a louder ticking sound, you pay more attention to the clock even though you are already familiar with a clock. Further investigations into elicitation and habituation of the electrodermal orienting reflex also showed that dishabituation is independent of sensitization for indifferent stimuli. [7]

A meta-analysis shows that dishabituation is improvised on preterm infants as compared to term infants based on the magnitude of stimulus sensitized. [8] [9]

Biological basis

As per the Center for Neural Engineering, University of Southern California (Los Angeles), the primordial hippocampus plays an important role in modeling the dishabituation of behavioral response. According to this, the interaction of two processes is dynamically postulated based on synaptic plasticity, which acquires both long and short-term forgetting. Along with that, cumulative shrinking is proposed to map responses from the temporal region of the anterior thalamus that references the spatial positions. The plasticity model combined with the structure of medial pallium model provides a structured network of neural mechanisms, contributing towards dishabituation and habituation alike. [10]

Accordingly, this phenomenon is neither indicative to counteract the emphasis of an existing habituation but instead, organizes an independent neuronal process, nor resulted by facilitation, as the etymology may indicate. [11]

In animals

All the above establish the process of dishabituation, where responding to a repetitive stimulus increases and has been documented in a wide range of organisms - from single-celled animals to primates - which is thought to allow an organism to reflexively either filter out or consider, all forms of information. [20]

It is also characterized as an emancipation of an existing prey-catching behavior. Sometimes however, the inconsistency in dishabituation of behavioral response is brought-on by mismatch between the 1st and 2nd stimuli, which in-turn is due to the occurrence of inhibition by habituation, to the existing stimulus. [11]

Application

Dishabituation shows an increase in reward effectiveness as it produces a heightened behavioral response to sensitization of arousal. [6] Other studies also show that it is caused by mind-wandering, where with distributed working process as opposed to practising in mass, the learning behavior is enhanced. [21]

In the development of preterm infants, the dishabituation process also provides with an approach for the early diagnosis of cognitive status and most importantly, their mental faculties performances. [8] [22]

See also

Related Research Articles

<span class="mw-page-title-main">Learning</span> Process of acquiring new knowledge

Learning is the process of acquiring new understanding, knowledge, behaviors, skills, values, attitudes, and preferences. The ability to learn is possessed by humans, animals, and some machines; there is also evidence for some kind of learning in certain plants. Some learning is immediate, induced by a single event, but much skill and knowledge accumulate from repeated experiences. The changes induced by learning often last a lifetime, and it is hard to distinguish learned material that seems to be "lost" from that which cannot be retrieved.

Classical conditioning is a behavioral procedure in which a biologically potent physiological stimulus is paired with a neutral stimulus. The term classical conditioning refers to the process of an automatic, conditioned response that is paired with a specific stimulus.

<span class="mw-page-title-main">Eric Kandel</span> American neuropsychiatrist

Eric Richard Kandel is an Austrian-born American medical doctor who specialized in psychiatry, a neuroscientist and a professor of biochemistry and biophysics at the College of Physicians and Surgeons at Columbia University. He was a recipient of the 2000 Nobel Prize in Physiology or Medicine for his research on the physiological basis of memory storage in neurons. He shared the prize with Arvid Carlsson and Paul Greengard.

In biology, a reflex, or reflex action, is an involuntary, unplanned sequence or action and nearly instantaneous response to a stimulus.

The Aplysia gill and siphon withdrawal reflex (GSWR) is an involuntary, defensive reflex of the sea hare Aplysia californica, a large shell-less sea snail or sea slug. This reflex causes the sea hare's delicate siphon and gill to be retracted when the animal is disturbed. Aplysia californica is used in neuroscience research for studies of the cellular basis of behavior including: habituation, dishabituation, and sensitization, because of the simplicity and relatively large size of the underlying neural circuitry.

Habituation is a form of non-associative learning in which a non-reinforced response to a stimulus decreases after repeated or prolonged presentations of that stimulus. For example, organisms may habituate to repeated sudden loud noises when they learn these have no consequences.

Neural adaptation or sensory adaptation is a gradual decrease over time in the responsiveness of the sensory system to a constant stimulus. It is usually experienced as a change in the stimulus. For example, if a hand is rested on a table, the table's surface is immediately felt against the skin. Subsequently, however, the sensation of the table surface against the skin gradually diminishes until it is virtually unnoticeable. The sensory neurons that initially respond are no longer stimulated to respond; this is an example of neural adaptation.

Affective neuroscience is the study of how the brain processes emotions. This field combines neuroscience with the psychological study of personality, emotion, and mood. The basis of emotions and what emotions are remains an issue of debate within the field of affective neuroscience.

Extinction is a behavioral phenomenon observed in both operantly conditioned and classically conditioned behavior, which manifests itself by fading of non-reinforced conditioned response over time. When operant behavior that has been previously reinforced no longer produces reinforcing consequences the behavior gradually stops occurring. In classical conditioning, when a conditioned stimulus is presented alone, so that it no longer predicts the coming of the unconditioned stimulus, conditioned responding gradually stops. For example, after Pavlov's dog was conditioned to salivate at the sound of a metronome, it eventually stopped salivating to the metronome after the metronome had been sounded repeatedly but no food came. Many anxiety disorders such as post traumatic stress disorder are believed to reflect, at least in part, a failure to extinguish conditioned fear.

Sensitization is a non-associative learning process in which repeated administration of a stimulus results in the progressive amplification of a response. Sensitization often is characterized by an enhancement of response to a whole class of stimuli in addition to the one that is repeated. For example, repetition of a painful stimulus may make one more responsive to a loud noise.

<span class="mw-page-title-main">Escape reflex</span>

Escape reflex, or escape behavior, is any kind of escape response found in an animal when it is presented with an unwanted stimulus. It is a simple reflectory reaction in response to stimuli indicative of danger, that initiates an escape motion of an animal. The escape response has been found to be processed in the telencephalon.

<span class="mw-page-title-main">Escape response</span>

Escape response, escape reaction, or escape behavior is a mechanism by which animals avoid potential predation. It consists of a rapid sequence of movements, or lack of movement, that position the animal in such a way that allows it to hide, freeze, or flee from the supposed predator. Often, an animal's escape response is representative of an instinctual defensive mechanism, though there is evidence that these escape responses may be learned or influenced by experience.

Exposure therapy is a technique in behavior therapy to treat anxiety disorders.

<span class="mw-page-title-main">Basolateral amygdala</span> The lateral, basal, and accessory-basal nuclei of the amygdala

The basolateral amygdala, or basolateral complex, consists of the lateral, basal and accessory-basal nuclei of the amygdala. The lateral nuclei receives the majority of sensory information, which arrives directly from the temporal lobe structures, including the hippocampus and primary auditory cortex. The basolateral amygdala also receives dense neuromodulatory inputs from ventral tegmental area (VTA), locus coeruleus (LC), and basal forebrain, whose integrity are important for associative learning. The information is then processed by the basolateral complex and is sent as output to the central nucleus of the amygdala. This is how most emotional arousal is formed in mammals.

Olfactory memory refers to the recollection of odors. Studies have found various characteristics of common memories of odor memory including persistence and high resistance to interference. Explicit memory is typically the form focused on in the studies of olfactory memory, though implicit forms of memory certainly supply distinct contributions to the understanding of odors and memories of them. Research has demonstrated that the changes to the olfactory bulb and main olfactory system following birth are extremely important and influential for maternal behavior. Mammalian olfactory cues play an important role in the coordination of the mother infant bond, and the following normal development of the offspring. Maternal breast odors are individually distinctive, and provide a basis for recognition of the mother by her offspring.

<span class="mw-page-title-main">Memory</span> Faculty of mind to store and retrieve data

Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembered, it would be impossible for language, relationships, or personal identity to develop. Memory loss is usually described as forgetfulness or amnesia.

<span class="mw-page-title-main">Pain in invertebrates</span> Contentious issue

Pain in invertebrates is a contentious issue. Although there are numerous definitions of pain, almost all involve two key components. First, nociception is required. This is the ability to detect noxious stimuli which evokes a reflex response that moves the entire animal, or the affected part of its body, away from the source of the stimulus. The concept of nociception does not necessarily imply any adverse, subjective feeling; it is a reflex action. The second component is the experience of "pain" itself, or suffering—i.e., the internal, emotional interpretation of the nociceptive experience. Pain is therefore a private, emotional experience. Pain cannot be directly measured in other animals, including other humans; responses to putatively painful stimuli can be measured, but not the experience itself. To address this problem when assessing the capacity of other species to experience pain, argument-by-analogy is used. This is based on the principle that if a non-human animal's responses to stimuli are similar to those of humans, it is likely to have had an analogous experience. It has been argued that if a pin is stuck in a chimpanzee's finger and they rapidly withdraw their hand, then argument-by-analogy implies that like humans, they felt pain. It has been questioned why the inference does not then follow that a cockroach experiences pain when it writhes after being stuck with a pin. This argument-by-analogy approach to the concept of pain in invertebrates has been followed by others.

<span class="mw-page-title-main">Attentional control</span> Individuals capacity to choose what they pay attention to and what they ignore

Attentional control, colloquially referred to as concentration, refers to an individual's capacity to choose what they pay attention to and what they ignore. It is also known as endogenous attention or executive attention. In lay terms, attentional control can be described as an individual's ability to concentrate. Primarily mediated by the frontal areas of the brain including the anterior cingulate cortex, attentional control is thought to be closely related to other executive functions such as working memory.

Intermediate-term memory (ITM) is a stage of memory distinct from sensory memory, working memory/short-term memory, and long-term memory. While sensory memory persists for several milliseconds, working memory persists for up to thirty seconds, and long-term memory persists from thirty minutes to the end of an individual's life, intermediate-term memory persists for about two to three hours. This overlap in the durations of these memory processes indicates that they occur simultaneously, rather than sequentially. Indeed, intermediate-term facilitation can be produced in the absence of long-term facilitation. However, the boundaries between these forms of memory are not clear-cut, and they can vary depending on the task. Intermediate-term memory is thought to be supported by the parahippocampal cortex.

Rachel Keen is a developmental psychologist known for her research on infant cognitive development, auditory development, and motor control. She is Professor Emeritus of Psychology at the University of Virginia.

References

  1. Steiner, Genevieve Z.; Barry, Robert J. (2014-02-14). "The mechanism of dishabituation". Frontiers in Integrative Neuroscience. 8: 14. doi: 10.3389/fnint.2014.00014 . ISSN   1662-5145. PMC   3924047 . PMID   24592215.
  2. "Classical Conditioning | Learning, Memory, & Attention" (PDF). University of California, San Diego - Department of Cognitive Science.
  3. Rankin, Catharine H.; Abrams, Thomas; Barry, Robert J.; Bhatnagar, Seema; Clayton, David; Colombo, John; Coppola, Gianluca; Geyer, Mark A.; Glanzman, David L. (2017-03-28). "Habituation Revisited: An Updated and Revised Description of the Behavioral Characteristics of Habituation". Neurobiology of Learning and Memory. 92 (2): 135–138. doi:10.1016/j.nlm.2008.09.012. ISSN   1074-7427. PMC   2754195 . PMID   18854219.
  4. 1 2 Steiner, Genevieve Z.; Barry, Robert J. (2014-01-01). "The mechanism of dishabituation". Frontiers in Integrative Neuroscience. 8: 14. doi: 10.3389/fnint.2014.00014 . PMC   3924047 . PMID   24592215.
  5. Thompson, Richard F (2017-03-28). "Habituation: A History". Neurobiology of Learning and Memory. 92 (2): 127–134. doi:10.1016/j.nlm.2008.07.011. ISSN   1074-7427. PMC   2714193 . PMID   18703156.
  6. 1 2 Klein, Stephen B. (2011-04-04). Learning: Principles and Applications. SAGE Publications. ISBN   9781412987349.
  7. Steiner, Genevieve Z.; Barry, Robert J. (2011-01-01). "Exploring the mechanism of dishabituation". Neurobiology of Learning and Memory. 95 (4): 461–466. CiteSeerX   10.1.1.1025.8760 . doi:10.1016/j.nlm.2011.02.007. ISSN   1074-7427. PMID   21329761. S2CID   24477711.
  8. 1 2 Kavšek, Michael; Bornstein, Marc H. (2010-01-01). "Visual Habituation and Dishabituation in Preterm Infants: A Review and Meta-analysis". Research in Developmental Disabilities. 31 (5): 951–975. doi:10.1016/j.ridd.2010.04.016. ISSN   0891-4222. PMC   3167676 . PMID   20488657.
  9. "Infant Perception and Cognition". Minnesota State University Moorhead.
  10. Wang, D.; Arbib, M. A. (1992-01-01). "Modeling the dishabituation hierarchy: the role of the primordial hippocampus". Biological Cybernetics. 67 (6): 535–544. doi:10.1007/BF00198760. ISSN   0340-1200. PMID   1472577. S2CID   7182661.
  11. 1 2 "Modeling the dishabituation hierarchy: The role of the primordial hippocampus" (PDF). Department of Computer Science and Engineering | The Ohio State UniversityAccessibilityPrivacy.
  12. Hawkins, Robert D.; Cohen, Tracey E.; Kandel, Eric R. (2017-03-29). "Dishabituation in Aplysia can involve either reversal of habituation or superimposed sensitization". Learning & Memory. 13 (3): 397–403. doi:10.1101/lm.49706. ISSN   1072-0502. PMC   1475823 . PMID   16705138.
  13. "Neuronal Mechanisms of Habituation and Dishabituation of the Gill-Withdrawal Reflex in Aplysia" (PDF). Institute of Neuroscience | UNIVERSITY OF OREGON.
  14. Carew, Thomas J.; Castellucci, Vincent F.; Kandel, Eric R. (1971-01-01). "An Analysis of Dishabituation and Sensitization of The Gill-Withdrawal Reflex In Aplysia". International Journal of Neuroscience. 2 (2): 79–98. doi:10.3109/00207457109146995. ISSN   0020-7454. PMID   4347410.
  15. "Slimelines Vol-1, Page 3". yyy.rsmas.miami.edu. Archived from the original on 2017-03-30. Retrieved 2017-03-29.
  16. Mongeluzi, Donna L.; Frost, William N. (2017-03-29). "Dishabituation of the Tritonia Escape Swim". Learning & Memory. 7 (1): 43–47. doi:10.1101/lm.7.1.43. ISSN   1072-0502. PMC   311319 . PMID   10706601.
  17. Asztalos, Zoltan; Baba, Kotaro; Yamamoto, Daisuke; Tully, Tim (2007-01-01). "The fickle Mutation of a Cytoplasmic Tyrosine Kinase Effects Sensitization but not Dishabituation in Drosophila Melanogaster". Journal of Neurogenetics. 21 (1): 59–71. doi:10.1080/01677060701249488. ISSN   0167-7063. PMC   2409174 . PMID   17464798.
  18. "Auditory stimulation dishabituates anti-predator escape behavior in hermit crabs (Coenobita clypeatus)" (PDF). Comparative Cognitive Psychology | UCLA Psychology Department.
  19. "High intensity exercise as a dishabituating stimulus restores counterregulatory responses in recurrently hypoglycemic rodents" (PDF). University of Dundee. Archived from the original (PDF) on 2017-03-30.
  20. Hauser, Marc D.; Konishi, Mark (2017-03-29). The Design of Animal Communication. MIT Press. ISBN   9780262582230.
  21. "The Costs and Benefits of Mind-Wandering: A Review" (PDF). American Psychological Association.
  22. Kavsek, Michael (2004). "Predicting Later IQ from Infant Visual Habituation and Dishabituation: A Meta-Analysis". Journal of Applied Developmental Psychology. 25 (3): 369–393. doi:10.1016/j.appdev.2004.04.006. ISSN   0193-3973.